Cover image for Digital Optical Measurement Techniques and Applications.
Digital Optical Measurement Techniques and Applications.
Title:
Digital Optical Measurement Techniques and Applications.
Author:
Rastogi, Pramod.
ISBN:
9781608078073
Personal Author:
Physical Description:
1 online resource (473 pages)
Contents:
Digital Optical Measurement Techniques and Applications -- Contents -- Foreword -- Preface -- Chapter 1 Digital Image Processing -- 1.1 Introduction -- 1.2 Fourier Optical Analysis -- 1.2.1 Frequency Domain Transfer Response -- 1.2.2 Desirable Features in a Camera Transfer Function -- 1.2.3 Sampling and Image Reconstruction -- 1.3 Digital Restoration Filters -- 1.3.1 Generation of Deconvolution Kernels -- 1.3.2 Useful Window Functions -- 1.3.3 Restoration Using Fast Fourier Transforms -- 1.4 Local Area Contrast Enhancement -- 1.4.1 Local Area Contrast Enhancement Algorithms for Thermal Imagers -- 1.4.2 Local Area Contrast Enhancement Algorithms for Reflective Imagers -- 1.5 Conclusions -- References -- Chapter 2 Interferometric Testing of Optical Surfaces -- 2.1 Fundamentals of Interferometry -- 2.1.1 Interference Made Possible by the Wave Nature of Light -- 2.1.2 Types of Interferometers for Surface Measurement -- 2.2 Commercial Interferometers -- 2.2.1 Overview of Commercially Available Interferometers -- 2.2.2 Additional Features and Accessories -- 2.2.3 Radius of Curvature Measurement -- 2.3 Practical Issues for Measuring Flats and Spheres with Commercial Interferometers -- 2.3.1 Set Up Hardware and Alignment -- 2.3.2 Software Setting -- 2.3.3 Calibration -- 2.3.4 Processing Data -- 2.3.5 Estimation of Measurement Uncertainties -- 2.4 Measurement of Aspherics -- 2.4.1 Definition and Types of Aspherics -- 2.4.2 Configurations for Null Testing Aspheric Surfaces -- 2.5 Measurements of Aspherics Using Computer Generated Holograms -- 2.5.1 Principles Behind CGH Interferometry -- 2.5.2 CGH Design -- 2.5.3 CGH Fabrication -- 2.5.4 Alignment of CGH Test -- 2.5.6 Error Analysis -- References -- Chapter 3 Phase-Shifting Interferometry -- 3.1 The Interferometer Equation -- 3.2 Three-Frame Method -- 3.3 Four-Frame Method -- 3.4 Least-Squares Algorithms.

3.5 Carré's Algorithm -- 3.6 Hariharan's Method -- 3.7 Design of Phase-Stepping Algorithms -- 3.8 Phase Stepping Techniques and Applications -- 3.8.1 Mechanical Stepping -- 3.8.2 Grating Methods -- 3.8.3 Methods Based on Pancharatnam's Phase -- 3.8.4 Spatial Methods -- References -- Chapter 4 Systematic Approach to Digital Holographic Imaging and Its Applicationsin Interferometry -- 4.1 Introduction -- 4.2 Recording of a Digital Hologram -- 4.3 Numerical Reconstruction in Digital Holography -- 4.3.1 Reconstruction Based on Convolution Approach -- 4.3.2 Reconstruction Based on Fresnel Approximation -- 4.3.3 Numerical Reconstruction with Adjustable Magnification -- 4.4 Suppression of DC Term -- 4.5 Reduction of Spatial Frequency Content Falling on CCD -- 4.5.1 Reduction of the Object Angle on the CCD Array by the Use of aDivergent Lens -- 4.5.2 Reduction of the Object Angle on the CCD by the Use of an Aperture -- 4.6 Digital Holographic Interferometry -- 4.6.1 Deformation Measurement -- 4.6.2 Study of Refractive Index Distribution -- 4.6.3 Vibration Measurement -- 4.6.4 Object Contouring -- 4.7 Conclusions -- References -- Chapter 5 Digital Speckle Pattern Interferometry -- 5.1 Introduction -- 5.2 Speckle Principle -- 5.2.1 Objective Speckle Distributions -- 5.2.2 Subjective Speckle Distributions -- 5.3 Speckle Interferometry -- 5.4 Phase Recovery for Speckle Interferometry -- 5.4.1 Phase Evaluation by Fourier Transform -- 5.5 Phase Unwrapping Processing -- 5.6 Optical Configurations for Experimental Measurements -- 5.6.1 Interferometers Sensitive to Out-of-Plane Displacements -- 5.6.2 Interferometers Sensitive to In-Plane Displacements -- 5.6.3 Interferometers Sensitive to Radial In-Plane Displacements -- 5.6.4 Interferometers Sensitive to Derivatives of Displacements -- 5.7 Concluding Remarks -- 5.8 Acknowledgments -- References.

Chapter 6 Digital Image Correlation -- 6.1 Introduction -- 6.2 Two-Dimensional Digital Image Correlation -- 6.2.1 Specimen Preparation and Image Capture -- 6.2.2 Basic Principles and Concepts -- 6.2.3 Displacement Field Measurement Using DIC -- 6.2.4 Strain Field Estimation with Pointwise Least Squares Algorithm -- 6.2.5 Application of 2D-DIC for Strain Measurement -- 6.3 Three-Dimensional Digital Image Correlation -- 6.3.1 Basic Principles and Concepts -- 6.3.2 Binocular Stereovision System Calibration -- 6.3.3 Stereo Matching -- 6.3.4 3D Profile Reconstruction and Deformation Calculation -- 6.3.5 Applications of 3D-DIC for Shape and Deformation Measurement -- 6.4 Concluding Remarks and Future Work -- References -- Chapter 7 Digital Fringe Projection Profilometry -- 7.1 Introduction -- 7.2 Principles of Method -- 7.2.1 Triangulation -- 7.2.2 Fringe Projection -- 7.2.3 Phase Evaluation -- 7.2.4 Phase Calibration -- 7.3 Applications of Method -- 7.3.1 Line Scan and Fringe Projection -- 7.3.2 Quality-guided Phase Unwrapping -- 7.3.3 Multifrequency Fringe Projection -- 7.3.4 Carrier Phase Removal -- 7.3.5 360-Degree Fringe Projection -- 7.4 Concluding Remarks -- References -- Chapter 8 Digital Photoelasticity -- 8.1 Introduction -- 8.2 Basics of Photoelasticity -- 8.2.1 Birefringence -- 8.2.2 Retardation Plates -- 8.2.3 Stress-Optic Law -- 8.2.4 Optical Arrangements in Conventional Photoelasticity -- 8.3 Jones Calculus -- 8.3.1 Analysis of Plane Polariscope by Jones Calculus -- 8.4 Fringe Contours in Conventional Photoelasticity -- 8.5 Calibration of Model Materials -- 8.6 Digital Fringe Multiplication -- 8.7 Digital Fringe Thinning -- 8.8 Phase Shifting in Photoelasticity -- 8.8.1 Intensity of Light Transmitted for Generic Arrangements of Plane and Circular Polariscopes -- 8.8.2 Brief Historical Development of Phase Shifting Techniques.

8.8.4 Intricacies in Digital Photoelasticity -- 8.8.5 Evaluation of Isoclinics -- 8.8.6 Phasemaps in Photoelasticity -- 8.8.7 Inconsistent and Ambiguous Zones in Wrapped Phasemaps -- 8.8.8 Unwrapping Methodologies -- 8.8.9 Unwrapping of Isoclinics -- 8.8.10 Smoothing of Isoclinics -- 8.8.11 Unwrapping of Isochromatics -- 8.8.12 Summary of Ten-Step Method -- 8.9 Color Image Processing Techniq -- 8.9.1 Intensity of Light Transmitted in White Light for Various Polariscope Arrangements -- 8.9.2 TFP, RTFP, and Window Search Method -- 8.9.3 Color Adaptation -- 8.9.4 Advancing Front Scanning Method -- 8.10 Digital Reflection Photoelasticity -- 8.10.1 Five-Step Method -- 8.11 S ome Applications -- 8.11.1 Role of RTFP in Evaluating Transient Thermal Stress Intensity Factors -- 8.11.2 Role of Digital Photoelasticity in Residual Stress Measurements of Glass -- 8.12 Closure -- Problems -- References -- Chapter9 Digital Particle Image Velocimetry -- 9.1 Introduction to the Principles of Digital Particle Image Velocimetry -- 9.2 Preliminaries: Fluid Flow Kinematics -- 9.3 Mathematical Analysis of 3D Cross-Correlation DPIV of Single-Exposed Interrogation Volume Pairs -- 9.3.1 The Signal in DPIV -- 9.3.2 3D Cross-Correlation Analysis of a Single-Exposed IV Pair -- 9.3.3 Determining the Expected Velocity in the IV from the Digital Cross-Correlation Function -- 9.4 Increasing Velocity Dynamic Range via Colocated Different Size IV Cross-Correlation DPIV -- References -- Chapter 10 Optical Fiber Sensors -- 10.1 Introduction -- 10.2 E xtracting Information from Data: Some Brief Examples -- 10.2.1 Single Point Sensors: Spectroscopy -- 10.2.2 Single Point Sensing: Processing the Fiber Gyroscope -- 10.2.3 Distributed Sensing -- 10.2.4 Multiplexed Systems -- 10.3 Repeatability, Reliability, and Maintenance -- 10.4 What of the Future? -- 10.5 Concluding Comments.

10.6 Acknowledgments -- Notes and Reference -- Chapter 11 Optical Coherence Tomography: Principles, Implementation, and Applications in Ophthalmology -- 11.1 Introduction -- 11.1.1 What Is Optical Coherence Tomography? -- 11.1.2 OCT and Ophthalmology -- 11.2 OCT Technologies -- 11.2.1 Requirement for Eye Imaging -- 11.2.2 TD-OCT Versus FD-OCT -- 11.2.3 Principles of FD-OCT -- 11.2.4 SD-OCT and SS-OCT -- 11.2.5 Interferometer Design of FD-OCT -- 11.2.6 Wavelength Selection -- 11.2.7 Resolution and Dispersion -- 11.2.8 SNR and Sensitivity -- 11.3 OCT in Ophthalmology -- 11.3.1 Posterior Eye Imaging -- 11.3.2 Anterior Eye Imaging -- 11.4 Conclusion -- References -- About the Authors -- About the Editor -- Index.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: