
Foundations of Antenna Engineering.
Title:
Foundations of Antenna Engineering.
Author:
Kildal, Per-Simon.
ISBN:
9781608078684
Personal Author:
Physical Description:
1 online resource (478 pages)
Contents:
Foundations of Antenna Engineering: A Unified Approach for Line-of-Sight and Multipath -- Contents -- Preface -- Acknowledgments -- Chapter 1 Introduction -- 1.1 Antenna Types and Classes -- 1.2 Brief History of Antennas and Analysis Methods -- 1.3 Terminology, Quantities, Units, and Symbols -- 1.3.1 Radiation or Scattering -- 1.3.2 Reflection, Refraction, and Diffraction -- 1.3.3 Rays, Waves, Phase Fronts, and Phase Paths -- 1.3.4 SI Units for Fields and Sources and Decibels -- 1.3.5 Symbols -- 1.4 Vector Notation and Coordinate Transformations -- 1.4.1 Some Vector Formulas -- 1.4.2 Coordinate Transformations -- 1.4.3 Dyads -- 1.5 Overview on EM Analysis Methods by S. Maci -- References -- Chapter 2 Characterization of Directive Antennas -- 2.1 Time-Harmonic Electromagnetic Fields -- 2.2 Plane Waves and Their Polarization -- 2.2.1 Linear Polarization -- 2.2.2 Circular Polarization -- 2.2.3 Axial Ratio and Cross-Polarization -- 2.2.4 Example: Amplitude and Phase Errors in Circular Polarization Excitations -- 2.2.5 Polarizer for Generating Circular Polarization -- 2.2.6 Example: Mismatch in Polarizer -- 2.3 Radiation Fields -- 2.3.1 Field Regions -- 2.3.2 Radiation Fields of Receiving Antennas -- 2.3.3 Far-Field Function and Radiation Intensity -- 2.3.4 Phase Reference Point and Fraunhofer Approximation -- 2.3.5 Polarization of Radiation Fields -- 2.3.6 Copolar and Cross-Polar Radiation Patterns -- 2.3.7 Phase Center -- 2.3.8 Total Radiated Power -- 2.3.9 Directive Gain and Directivity -- 2.3.10 Beamwidth -- 2.3.11 Cross-Polarization -- 2.3.12 Beam Efficiency -- 2.3.13 E- and H-Plane Patterns -- 2.3.14 Fourier Expansion of the Radiation Field -- 2.3.15 Example: Phase Reference Point for Asymmetric Phase Pattern -- 2.3.16 Example: Calculation of Phase Center of a Symmetric Beam -- 2.4 Rotationally Symmetric Antennas (BOR).
2.4.1 BOR0 Antennas with Rotationally Symmetric Radiation Fields -- 2.4.2 BOR1 Antennas -- 2.4.3 Example: Directivity of BOR1 Antenna with Low Sidelobes -- 2.4.4 Example: Directivity of BOR1 Antenna with High Far-Out Sidelobes -- 2.4.5 Example: BOR1 Antenna with Different E- and H-Plane Patterns -- 2.4.6 Example: BOR1 Antenna with Different E- and H-Plane Phase Patterns -- 2.5 System Characteristics of the Antenna -- 2.5.1 Antenna Gain -- 2.5.2 Aperture Efficiency and Effective Area -- 2.5.3 Friis Transmission Equation and the Radar Equation -- 2.5.4 Antenna Noise Temperature and G/T -- 2.5.5 Bandwidth -- 2.5.6 Tolerances -- 2.5.7 Environmental Effects -- 2.5.8 Example: Noise Temperature and G/T -- 2.6 Equivalent Circuits of Single-Port Antennas -- 2.6.1 Transmitting Antennas -- 2.6.2 Impedance Matching to Transmission Line -- 2.6.3 Receiving Antenna -- 2.6.4 Conjugate Impedance Matching -- 2.6.5 Impedance and Reflection Coefficient Transformations -- 2.7 Periodic Reflection Coefficients -- 2.8 Equivalent Circuits of Multiport Array Antennas -- 2.9 Further Reading -- 2.10 Complementary Comments by S. Maci -- 2.11 Exercises -- References -- Chapter 3 Characterization in Multipath -- 3.1 Multipath Without Line of Sight (LOS) -- 3.1.1 Rayleigh Fading and CDF -- 3.1.2 Angle of Arrival (AoA), XPD, and Polarization Imbalance -- 3.1.3 Rich Isotropic Multipath (RIMP) -- 3.2 Characterization of Single-Port Antennas in RIMP -- 3.2.1 Antenna Impedance, Port Impedance, and Reflection Coefficient -- 3.2.2 Mean Effective Gain (MEG) and Mean Effective Directivity (MED) -- 3.2.3 Total Radiation Efficiency and Transmission Formula -- 3.3 Characterization of Multiport Antennas in RIMP -- 3.3.1 Definition of Channel -- 3.3.2 Embedded Elements -- 3.3.3 Embedded Radiation Efficiency and Decoupling Efficiency -- 3.3.4 Correlation Between Ports.
3.4 Characterization of Diversity Performance -- 3.4.1 Channel Estimation and Digital MRC Processing -- 3.4.2 Example: MRC Applied to 2-D Slot Antenna Case -- 3.4.3 Diversity Gains (Apparent, Effective, and Actual) -- 3.4.4 Theoretical Determination of Diversity Gain -- 3.5 Maximum Available Capacity from Shannon -- 3.5.1 Single-Port System -- 3.5.2 Parallel Channels in LOS -- 3.5.3 Parallel Channels in Multipath -- 3.5.4 Normalization -- 3.5.5 Numerical Simulation of Channels in Multipath -- 3.6 Emulation of RIMP Using Reverberation Chamber -- 3.6.1 Mode Stirring (Mechanical, Platform, Polarization) -- 3.6.2 The S-Parameters of the Chamber and of the Antennas -- 3.6.3 Rayleigh Fading, Rician Fading, and AoA Distribution -- 3.6.4 Average Transmission Level (Hill's Formula) and Calibration -- 3.6.5 Frequency Stirring on Net Transfer Function -- 3.6.6 Number of Independent Samples and Accuracy -- 3.7 Measurements in Reverberation Chamber -- 3.7.1 Calibration and Characterizing Multiport Antennas -- 3.7.2 Radiated Power, Receiver Sensitivity, and Data Throughput -- 3.8 System Modeling Using Digital Threshold Receiver -- 3.8.1 The digital threshold receiver -- 3.8.2 Modeling OFDM in LTE 4G System -- 3.8.3 Theoretical and Measured Results for i.i.d. Diversity Case -- 3.9 MIMO Multiplexing to Obtain Multiple Bitstreams -- 3.9.1 Diagonalizing the Channel Matrix -- 3.9.2 Measurements of Two Bitstreams in Reverberation Chamber -- 3.9.3 Quality of Throughput in Terms of MIMO Efficiency -- 3.10 Antennas for Use on Handsets -- 3.11 Exercises -- References -- Chapter 4 The Theory of Radiation from Current Sources -- 4.1 Maxwell's Equations -- 4.1.1 Differential Form -- 4.1.2 Standard Boundary Conditions -- 4.1.3 Impressed Current Sources on PECs -- 4.1.4 Soft and Hard Boundary Conditions -- 4.1.5 Auxiliary Vector Potentials.
4.2 Vector Integral Forms of the E- and H-Fields -- 4.2.1 General Expressions -- 4.2.2 Radiating Far-Field Expressions -- 4.2.3 Duality -- 4.2.4 Superposition -- 4.2.5 Replacement Between Electric and Magnetic Currents -- 4.2.6 Frequency Scaling -- 4.3 Construction of Solutions: Uniqueness and Equivalence -- 4.3.1 PEC Equivalent and Magnetic Currents -- 4.3.2 Free Space and Huygens Equivalents -- 4.3.3 Physical Equivalent -- 4.4 Incremental Current Sources -- 4.4.1 Incremental Electric Current (or Hertz Dipole) -- 4.4.2 Incremental Magnetic Current -- 4.4.3 Huygens Source -- 4.4.4 Summary -- 4.4.5 Example: Directivities of Incremental Sources -- 4.5 Reaction, Reciprocity, and Mutual Coupling -- 4.5.1 Reaction Integrals -- 4.5.2 Three Reciprocity Relations -- 4.5.3 Reciprocity Between Input and Output Ports of Antennas -- 4.5.4 Mutual Impedance, Mutual Admittance, and Coupling Coefficient -- 4.6 Imaging -- 4.7 Integral Equations, Method of Moment, and Galerkin's Method -- 4.7.1 Simple Algorithm for the Near Field from the Line Current -- 4.7.2 Simple Algorithm for the Near Field from the Surface Current -- 4.8 Complementary Comments by S. Maci -- 4.9 Exercises -- References -- Chapter 5 Small Wire and Slot Antenna -- 5.1 Electric Monopole and Dipole -- 5.1.1 Approximate Current Distribution of a Monopole -- 5.1.2 Approximate Current Distribution of a Dipole -- 5.1.3 Far-Field Function of a Dipole -- 5.1.4 Directivity and Radiation Resistance of a Short Dipole -- 5.1.5 Equivalent Circuit and Maximum Effective Aperture of a Short Dipole -- 5.1.6 Directivity and Radiation Resistance of a Half-Wave Dipole -- 5.1.7 Self-Impedance of an Electric Dipole -- 5.1.8 Impedance of Cylindrical and Flat Electric Dipoles -- 5.1.9 Dipole at an Arbitrary Location -- 5.1.10 Arbitrary Dipole Above Ground -- 5.1.11 Vertical Dipole Above Ground -- 5.1.12 Vertical Monopole.
5.1.13 Horizontal Dipole Above Ground -- 5.2 Electric Loop Antenna as Vertical Magnetic Dipole -- 5.3 Helical Antennas -- 5.4 Slot Antennas -- 5.4.1 Field Distribution and Radiation Pattern -- 5.4.2 Slot Admittance When Excited by Voltage Source -- 5.4.3 Slot Excited by a Plane Wave -- 5.4.4 Reflection Coefficient of Open Waveguide -- 5.4.5 Slots in Waveguide Walls -- 5.5 Further Reading -- 5.6 Complementary Comments by S. Maci -- 5.7 Exercises -- References -- Chapter 6 Microstrip Antennas and Spectral Domain Methods -- 6.1 Transmission Line Model for a Rectangular Patch -- 6.1.1 Radiation Pattern by a Two-Slot Model -- 6.1.2 Impedance by a Transmission Line Model -- 6.2 Self-Reaction Model for Patch Impedance -- 6.2.1 Expansion of Current Distribution and Method of Moment -- 6.2.2 Impedance of Line-Fed Patches -- 6.2.3 Impedance of Probe-Fed Patches -- 6.3 Spectral Domain Methods -- 6.3.1 3-D Field Problem -- 6.3.2 Harmonic 1-D Field Problem -- 6.3.3 Green's Function of Harmonic 1-D Field Problem -- 6.3.4 Numerical Implementation -- 6.4 Further Reading -- 6.5 Complementary Comments by S. Maci -- 6.6 Exercises -- References -- Chapter 7 Radiation from Apertures -- 7.1 Apertures in PECs -- 7.1.1 PECs of Arbitrary Shape -- 7.1.2 Infinite PEC Planes -- 7.2 Virtual Apertures in Free Space -- 7.2.1 Free Space and Huygens Equivalents -- 7.2.2 Plane Apertures -- 7.3 Apertures in the xy-Plane -- 7.3.1 PEC Aperture and Its Incremental Element Factor -- 7.3.2 Free-Space Aperture and Its Incremental Element Factor -- 7.3.3 Power Integration over Aperture and Maximum Directivity -- 7.4 Rectangular Plane Aperture -- 7.4.1 E- and H-Plane Patterns -- 7.4.2 Directivity and Aperture Efficiency -- 7.4.3 Uniform Aperture Distribution -- 7.5 Circular Aperture with BOR1 Excitation -- 7.5.1 Aperture Field and Far-Field Function -- 7.5.3 Gaussian Aperture Distribution.
7.5.4 Tapered Aperture Distributions.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View