Cover image for Quantum Computing : A Pathway to Quantum Logic Design.
Quantum Computing : A Pathway to Quantum Logic Design.
Title:
Quantum Computing : A Pathway to Quantum Logic Design.
Author:
Babu, Hafiz Hasan.
ISBN:
9780750341516
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (272 pages)
Series:
IOP Ebooks Series
Contents:
Intro -- Preface -- Acknowledgments -- Author biography -- Hafiz Md Hasan Babu -- Outline placeholder -- An overview of quantum circuits -- Chapter 1 Quantum logic -- 1.1 Overview -- 1.2 Motivations towards quantum computing -- 1.3 The relationship between reversible and quantum logic -- 1.4 Quantum computers -- 1.5 The working principles of quantum computers -- 1.6 The evolution of quantum computers -- 1.7 Why pursue quantum computing? -- 1.8 Summary -- Further reading -- Chapter 2 Basic definitions of quantum logic -- 2.1 The quantum bit -- 2.2 The quantum gate -- 2.2.1 The quantum Feynman gate -- 2.2.2 The quantum Tofolli gate -- 2.2.3 The quantum Fredkin gate -- 2.3 Garbage outputs -- 2.4 Constant inputs -- 2.5 Area -- 2.6 Power -- 2.7 Delay -- 2.8 Depth -- 2.9 Quantum cost -- 2.10 Quantum gate calculation complexity -- 2.11 Summary -- Further reading -- Chapter 3 The quantum bit string comparator -- 3.1 Characteristics of a comparator -- 3.2 The magnitude comparator -- 3.3 The design of a quantum comparator -- 3.3.1 Example -- 3.4 Summary -- Further reading -- Chapter 4 The quantum adder and subtractor -- 4.1 The quantum adder -- 4.1.1 The quantum full-adder -- 4.2 The quantum subtractor -- 4.2.1 The quantum half-subtractor -- 4.2.2 The quantum full-subtractor -- 4.3 Summary -- Further reading -- Chapter 5 The quantum multiplexer and demultiplexer -- 5.1 The quantum multiplexer -- 5.1.1 The quantum 2-to-1 multiplexer -- 5.1.2 The quantum 4-to-1 multiplexer -- 5.1.3 The quantum 2n-to-1 multiplexer -- 5.2 The quantum demultiplexer -- 5.2.1 The quantum 1-to-2 demultiplexer -- 5.2.2 The quantum 1-to-4 demultiplexer -- 5.2.3 The quantum 1-to-2n demultiplexer -- 5.3 Summary -- Further reading -- Chapter 6 Quantum adder circuits -- 6.1 The carry skip adder -- 6.2 The quantum comparison circuit -- 6.3 The quantum 2-to-1 multiplier circuit.

6.4 The design of a quantum carry skip adder -- 6.4.1 The four-bit quantum carry skip adder -- 6.4.2 The n-bit quantum carry skip adder -- 6.4.3 Calculation of the area and power of a quantum carry skip adder circuit -- 6.4.4 Complexity of the n-bit quantum carry skip adder circuit -- 6.5 The quantum BCD adder -- 6.6 Summary -- Further reading -- Chapter 7 The quantum multiplier-accumulator -- 7.1 The importance of the quantum multiplier-accumulator -- 7.2 The multiplication technique -- 7.3 Reduction of the garbage outputs and ancillary inputs of quantum circuits -- 7.4 The design of a quantum multiplier circuit -- 7.4.1 The quantum ANDing circuit -- 7.4.2 The quantum full-adder circuit -- 7.4.3 The n × n-qubit quantum multiplier -- 7.5 Summary -- Further reading -- Chapter 8 The quantum divider -- 8.1 Division algorithms -- 8.1.1 Classical integer division algorithms -- 8.1.2 Quantum integer division algorithms -- 8.2 The importance of the quantum divider -- 8.3 The tree-based quantum division technique -- 8.3.1 Definitions and properties of the division technique -- 8.3.2 The algorithm of the division technique -- 8.4 The design of a quantum divider circuit -- 8.4.1 A technique to minimize the number of ancillary inputs in the quantum circuit realization -- 8.4.2 The components of the quantum divider circuit -- 8.5 Summary -- Further reading -- Chapter 9 The quantum BCD priority encoder -- 9.1 The properties of an encoder -- 9.2 The design of a quantum BCD priority encoder circuit -- 9.2.1 The quantum BCD priority encoder circuit -- 9.2.2 Analysis of the properties of the encoder circuit -- 9.3 Summary -- Further reading -- Chapter 10 The quantum decoder -- 10.1 The characteristics of a decoder -- 10.2 The design of a quantum decoder -- 10.2.1 The quantum decoder circuit -- 10.2.2 Analysis of the properties of the circuits -- 10.3 Summary.

Further reading -- Chapter 11 The quantum square root circuit -- 11.1 Properties of a square root function -- 11.2 The design of a quantum square root circuit -- 11.2.1 The quantum adder/subtractor circuit -- 11.2.2 The quantum square root circuit -- 11.2.3 Analysis of the properties of the circuit -- 11.3 Summary -- Further reading -- Chapter 12 Quantum latches and counter circuits -- 12.1 Properties of latches -- 12.2 The design of the quantum latches -- 12.2.1 The quantum SR latch -- 12.2.2 The quantum D latch -- 12.2.3 The quantum T latch -- 12.2.4 The quantum J-K latch -- 12.3 Properties of counter circuits -- 12.4 The design of the quantum counters -- 12.4.1 The quantum asynchronous counter -- 12.4.2 The quantum synchronous counter -- 12.5 Summary -- Further reading -- Chapter 13 The quantum controlled ternary barrel shifter -- 13.1 Ternary quantum gates -- 13.1.1 The quantum ternary Peres gate -- 13.1.2 The quantum ternary modified Fredkin gate -- 13.2 Properties of ternary quantum circuits -- 13.3 The quantum barrel shifter -- 13.3.1 Logical right shift -- 13.3.2 Arithmetic right shift -- 13.3.3 Right rotation -- 13.3.4 Logical left shift -- 13.3.5 Arithmetic left shift -- 13.3.6 Left rotation -- 13.4 The design of a quantum ternary barrel shifter -- 13.4.1 The optimized quantum ternary barrel shifter -- 13.4.2 Properties of the designed circuit -- 13.5 Summary -- Further reading -- Chapter 14 Quantum random access memory -- 14.1 The quantum n-to-2n decoder -- 14.2 The quantum memory unit -- 14.3 The construction procedure of the quantum RAM -- 14.4 Summary -- Further reading -- Chapter 15 The quantum arithmetic logic unit -- 15.1 The design of a quantum ALU -- 15.1.1 The first approach -- 15.1.2 The second approach -- 15.1.3 The third approach -- 15.2 Summary -- Further reading -- Chapter 16 Applications of quantum computing technology.

16.1 Optimization -- 16.1.1 Roswell Park Cancer Institute -- 16.1.2 Volkswagen Group -- 16.1.3 Recruit Communications -- 16.2 Machine learning -- 16.2.1 QxBranch -- 16.2.2 Los Alamos National Laboratory -- 16.2.3 NASA -- 16.3 Biomedical simulations -- 16.4 Financial services -- 16.5 Computational chemistry -- 16.6 Logistics and scheduling -- 16.7 Cyber security -- 16.8 Circuit, software, and system fault simulation -- 16.9 Weather forecasting -- 16.10 Summary -- Further reading -- Outline placeholder -- An overview of quantum fault-tolerant circuits -- Chapter 17 Quantum fault-tolerant circuits -- 17.1 The need for quantum fault-tolerant circuits -- 17.2 The fault-tolerant quantum adder -- 17.2.1 The fault-tolerant full-adder -- 17.3 The fault-tolerant multiplier -- 17.3.1 The fault-tolerant signed multiplier -- 17.4 The quantum fault-tolerant integer divider -- 17.4.1 The restoring division algorithm -- 17.4.2 The subtractor module -- 17.4.3 The conditional addition operation module -- 17.4.4 Quantum restoring integer division circuitry -- 17.5 Summary -- Further reading -- Outline placeholder -- An overview of quantum-dot cellular automata -- Chapter 18 Quantum-dot cellular automata -- 18.1 Fundamentals of QCA circuits -- Area -- Delay -- Kink energy -- Power -- Overall cost -- 18.2 The QCA cell -- 18.3 Information and data propagation -- 18.4 Basic QCA elements and gates -- 18.4.1 The QCA majority voter -- 18.4.2 The QCA AND gate -- 18.4.3 The QCA OR gate -- 18.4.4 The QCA NOT gate -- 18.4.5 The QCA wire -- 18.5 The QCA clock -- 18.5.1 Special cell arrangements and symmetric cells -- 18.5.2 NOT gate clock zones -- 18.5.3 Majority voter clock zones -- 18.6 Summary -- Further reading -- Chapter 19 QCA adder and subtractor -- 19.1 The Ex-OR gate -- 19.2 The QCA half-adder and half-subtractor -- 19.3 The QCA full-adder and full-subtractor.

19.3.1 Implementation of the full-adder and full-subtractor -- 19.4 Summary -- Further reading -- Chapter 20 The QCA multiplier and divider -- 20.1 The QCA multiplier -- 20.1.1 Multiplication networks -- 20.1.2 QCA multiplication networks -- 20.1.3 Multiplier design -- 20.1.4 QCA implementation -- 20.2 The QCA divider -- 20.2.1 The non-restoring binary divider -- 20.2.2 Divider implementation -- 20.3 Summary -- Further reading -- Chapter 21 QCA asynchronous and synchronous counters -- 21.1 The asynchronous counter -- 21.1.1 The dual-edge triggered J-K flip-flop -- 21.1.2 The design of dual-edge triggered J-K flip-flop -- 21.1.3 The asynchronous backward counter -- 21.2 The synchronous counter -- 21.2.1 QCA synchronous counters -- 21.3 Summary -- Further reading -- Chapter 22 The QCA decoder and encoder -- 22.1 The QCA decoder -- 22.1.1 The QCA 2-to-4 decoder -- A. Calculation for AB̄ ̄-- B. Calculation for AB -- 22.1.2 The QCA 3-to-8 decoder -- 22.2 The QCA encoder -- 22.2.1 The QCA turbo encoder design -- 22.2.2 The RC encoder with single-feedback -- 22.2.3 The RC encoder with multi-feedback -- 22.3 Summary -- Further reading -- Chapter 23 The QCA multiplexer and demultiplexer -- 23.1 The QCA 2-to-1 multiplexer -- 23.2 The QCA 4-to-1 multiplexer -- 23.3 The QCA 1-to-2 demultiplexer -- 23.4 The QCA 1-to-4 demultiplexer -- 23.5 Multiplexing/demultiplexing using QCA -- 23.5.1 The effect of the selector line (S0,S1) on the 2-to-1 MUX/1-to-2 DEMUX -- 23.6 Summary -- Further reading -- Chapter 24 The QCA RAM, ROM, and processor -- 24.1 The RAM cell -- 24.2 The QCA ROM -- 24.3 The QCA processor -- 24.3.1 Instruction memory -- 24.3.2 Data memory -- 24.3.3 The arithmetic logic unit -- 24.3.4 The integrated processor -- 24.4 Summary -- Further reading.
Abstract:
In this essential resource for students and active researchers, readers are introduced to quantum computing and quantum logic, fault tolerant quantum computing and quantum dot cellular automata.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: