Cover image for Computational Intelligence Based Solutions for Vision Systems.
Computational Intelligence Based Solutions for Vision Systems.
Title:
Computational Intelligence Based Solutions for Vision Systems.
Author:
Bajaj, Varun.
ISBN:
9780750348218
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (246 pages)
Series:
IOP Ebooks Series
Contents:
Intro -- Preface -- Acknowledgements -- Editors biographies -- Varun Bajaj -- Irshad Ahmad Ansari -- List of contributors -- Chapter 1 Drone-based vision system: surveillance during calamities -- 1.1 Introduction -- 1.2 Surveillance system -- 1.2.1 The importance of surveillance systems -- 1.2.2 The use of drones in surveillance system -- 1.3 Proposed method -- 1.3.1 Detecting human faces -- 1.3.2 Tracking human faces -- 1.3.3 Locating and capturing human faces -- 1.3.4 Counting the number of people -- 1.3.5 Drone deployment and testing -- 1.4 Conclusion -- Acknowledgements -- References -- Chapter 2 Use of computer vision to inspect automatically machined workpieces -- 2.1 Introduction -- 2.2 Related works -- 2.3 Methods -- 2.3.1 Image acquisition -- 2.3.2 Surface analysis to determine workpiece quality -- 2.3.3 Burr detection -- 2.3.4 Classification -- 2.4 Experimental set-up -- 2.5 Experimental results -- 2.5.1 Workpiece quality -- 2.5.2 Burrs -- 2.6 Conclusions and future work -- Acknowledgements -- References -- Chapter 3 Machine learning for vision based crowd management -- 3.1 Introduction -- 3.2 Related work -- 3.2.1 A review of people count detection techniques -- 3.3 Proposed methodology -- 3.3.1 The architecture of the proposed system -- 3.3.2 An objective technique for counting people -- 3.3.3 The architecture of YOLOV3 -- 3.4 Experimental results -- 3.4.1 Dataset -- 3.4.2 Performance analysis -- 3.5 Conclusion -- References -- Chapter 4 Skin cancer classification model based on hybrid deep feature generation and iterative mRMR -- 4.1 Introduction -- 4.1.1 Background -- 4.1.2 Motivation -- 4.1.3 Literature review -- 4.1.4 Our model -- 4.1.5 Contributions -- 4.1.6 Study outline -- 4.2 Material -- 4.3 Preliminary -- 4.3.1 Residual networks -- 4.3.2 DenseNet201 model -- 4.3.3 MobileNetV2 model -- 4.3.4 ShuffleNet model.

4.4 The proposed framework -- 4.4.1 Feature generation -- 4.4.2 Iterative mRMR feature selector -- 4.4.3 Classification -- 4.5 Results and discussion -- 4.5.1 Experimental set-up -- 4.5.2 Results -- 4.5.3 Discussion -- 4.6 Conclusions and future works -- References -- Chapter 5 An analysis of human activity recognition systems and their importance in the current era -- 5.1 Introduction -- 5.2 Stages in human activity recognition -- 5.3 Applications of human activity recognition -- 5.3.1 Security video surveillance and home monitoring -- 5.3.2 Retail -- 5.3.3 Healthcare -- 5.3.4 Smart homes -- 5.3.5 Workplace monitoring -- 5.3.6 Entertainment -- 5.4 Approaches for human activity recognition -- 5.4.1 The HAR process using 3D posture data -- 5.4.2 Human action recognition using DFT -- 5.4.3 The local SVM approach -- 5.4.4 A robust approach for action recognition based on spatio-temporal features in RGB-D sequences -- 5.4.5 SlowFast networks for video recognition -- 5.4.6 Long-term recurrent convolutional networks for visual recognition and description -- 5.4.7 3D convolutional neural networks for human action recognition -- 5.4.8 Human activity recognition using an optical flow based feature set -- 5.4.9 Learning a hierarchical spatio-temporal model -- 5.4.10 Human action recognition using trajectory-based representation -- 5.4.11 Human activity recognition using a deep neural network with contextual information -- 5.5 Challenges in human activity recognition -- 5.5.1 Dataset -- 5.5.2 Sensors -- 5.5.3 Experimentation environment -- 5.5.4 Intraclass variation and interclass similarity -- 5.5.5 Multi-subject interactions and group activities -- 5.5.6 Training -- 5.5.7 Challenges in HAR applications -- 5.6 Datasets available for activity detection research -- 5.6.1 Action-level dataset -- 5.6.2 Interaction-level dataset.

5.6.3 Group activities level dataset -- 5.6.4 Behavior-level dataset -- 5.7 Scope for further research in this domain -- 5.8 Conclusion -- References -- Chapter 6 A deep learning-based food detection and classification system -- 6.1 Introduction -- 6.2 Literature review -- 6.3 Theory -- 6.3.1 YOLOv3 -- 6.3.2 YOLOv4 -- 6.3.3 SSD -- 6.4 Methodology/experiments -- 6.4.1 Dataset -- 6.4.2 Data augmentation -- 6.4.3 Implementation -- 6.4.4 Software and hardware -- 6.4.5 Performance parameters -- 6.5 Results -- 6.6 Conclusion and future scope -- References -- Chapter 7 The detection of images recaptured through screenshots based on spatial rich model analysis -- 7.1 Introduction -- 7.2 Literature review -- 7.3 Spatial rich model -- 7.3.1 Computing noise residuals -- 7.3.2 Residual truncation and quantization -- 7.3.3 Formation of a sub-model with co-occurrence matrices -- 7.4 Proposed work -- 7.4.1 Selection of the neighborhood descriptor -- 7.5 Experimental results -- 7.5.1 Screenshot dataset -- 7.5.2 Detection performance of the neighborhood descriptors -- 7.5.3 The detection performance of neighborhood descriptors with an ensemble classifier -- 7.5.4 Detection performance of neighborhood descriptors with an SVM -- 7.5.5 Performance comparison of the neighborhood descriptors -- 7.6 Conclusion -- 7.7 Future work -- Acknowledgements -- References -- Chapter 8 Data augmentation for deep ensembles in polyp segmentation -- 8.1 Introduction -- 8.2 Deep learning for semantic image segmentation -- 8.3 Stochastic activation selection -- 8.4 Data augmentation -- 8.4.1 Spatial stretch -- 8.4.2 Shadows -- 8.4.3 Contrast and motion blur -- 8.4.4 Color change and rotation -- 8.4.5 Segmentation -- 8.4.6 Rand augment -- 8.4.7 RICAP -- 8.4.8 Color and shape change -- 8.4.9 Occlusion 1 -- 8.4.10 Occlusion 2 -- 8.4.11 GridMask -- 8.4.12 AttentiveCutMix.

8.4.13 Modified ResizeMix -- 8.4.14 Color mapping -- 8.5 Results on colorectal cancer segmentation -- 8.5.1 Datasets, testing protocol and metrics -- 8.5.2 Experiments -- 8.6 Conclusion -- Acknowledgments -- References -- Chapter 9 Identification of the onset of Parkinson's disease through a multiscale classification deep learning model utilizing a fusion of multiple conventional features with an nDS spatially exploited symmetrical convolutional pattern -- 9.1 Introduction -- 9.1.1. A comprehensive literature review -- 9.1.2 Contributions -- 9.2 Proposed methodology -- 9.2.1 Retrieval of voice samples -- 9.2.2 Pre-processing -- 9.2.3 Proposed multiscale multiple feature convolution with hybrid n-dilations (MMFCHnD) architecture -- 9.3 Experimental results and discussion -- 9.3.1 Evaluation metrics -- 9.3.2 Development of the training and testing images -- 9.3.3 Deep learning training details -- 9.3.4 Implementation results -- 9.4 Conclusion -- References -- Chapter 10 Computer vision approach with deep learning for a medical intelligence system -- 10.1 Introduction -- 10.2 Defining computer vision -- 10.3 Computer vision in practice -- 10.3.1 Medical imaging -- 10.3.2 Cardiology -- 10.3.3 Pathology -- 10.3.4 Dermatology -- 10.3.5 Ophthalmology -- 10.3.6 Video for medical purposes -- 10.3.7 The presence of humans -- 10.3.8 Implementation in the clinic -- 10.4 A case study of vision based machine learning -- 10.4.1 Networks of neurons -- 10.5 Data preparation overview -- 10.5.1 Data access and querying -- 10.5.2 De-identification -- 10.5.3 Data retention -- 10.5.4 Medical image resembling -- 10.5.5 Choosing an appropriate label and a definition of ground truth -- 10.5.6 The truth or the label's quality -- 10.6 The future of computer vision and natural language processing in healthcare -- 10.7 Research related problems in computer vision.

10.7.1 View of CNN through computer vision -- 10.7.2 Visualizations based on gradients -- References -- Chapter 11 Machine learning in medicine: diagnosis of skin cancer using a support vector machine (SVM) classifier -- 11.1 Introduction -- 11.2 Technologies used in skin cancer detection -- 11.3 Support vector machines (SVMs) -- 11.4 The SVM in skin cancer detection -- 11.4.1 Image acquisition -- 11.4.2 Feature extraction -- 11.4.3 SVM classification -- 11.5 Brief description of skin cancer detection -- 11.6 Challenges faced by SVMs -- 11.7 Future aspects in skin cancer detection -- 11.8 Conclusion -- References.
Abstract:
This book discusses various vision systems, their classifications and design strategies. It is essential reading for academic and industrial researchers to understand the computational intelligence research domain as related to vision systems and their applications.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: