Cover image for Nanoengineered Materials for Solid Oxide Cells.
Nanoengineered Materials for Solid Oxide Cells.
Title:
Nanoengineered Materials for Solid Oxide Cells.
Author:
Develos-Bagarinao, Katherine.
ISBN:
9780750346245
Edition:
1st ed.
Physical Description:
1 online resource (363 pages)
Series:
IOP Ebooks Series
Contents:
Intro -- Preface -- Acknowledgements -- List of contributors -- Editor biography -- Katherine Develos-Bagarinao -- Author biographies -- Outline placeholder -- Federico Baiutti -- Mónica Burriel -- Fjorelo Buzi -- Ozden Celikbilek -- Gang Chen -- Ming Chen -- Yan Chen -- Juan de Dios Sirvent -- Shuai He -- Kevin Huang -- Maxime Hubert -- Tomohiro Ishiyama -- Haruo Kishimoto -- Jérôme Laurencin -- Aline Léon -- Federico Monaco -- Dario Ferreira Sanchez -- Takaaki Shimura -- Bhaskar Reddy Sudireddy -- Albert Tarancón -- Miao Yu -- Xiangling Yue -- Mengzhen Zhou -- Glossary -- Chapter 1 Advances in nanoengineered air electrodes: towards high-performance solid oxide cells -- 1.1 Introduction -- 1.2 The fabrication of nanostructured electrodes -- 1.2.1 Thin-film methods -- 1.2.2 Other common methods -- 1.3 Air electrode performance enhancement using nanostructures -- 1.3.1 Nanostructure engineering at the volume level -- 1.3.2 Nanostructure engineering at the surface level -- 1.4 Implementation of thin-film air electrode layers in full devices -- 1.5 Conclusions -- Acknowledgements -- References -- Chapter 2 Recent advances in the understanding of the influence of surface chemistry and microstructure on the functional properties of solid oxide cell air electrodes -- 2.1 Introduction -- 2.1.1 Solid oxide cells -- 2.1.2 Solid oxide cell air electrodes -- 2.1.3 Parameters and techniques used to evaluate the performance of air electrodes -- 2.2 Understanding the effects of surface chemistry on the oxygen reduction reaction -- 2.2.1 The origin of surface cation segregation and strategies to limit it -- 2.2.2 Influence of the surface termination on the electrode surface exchange -- 2.2.3 Intrinsic factors affecting the surface exchange -- 2.2.4 Extrinsic factors affecting the surface exchange.

2.3 Tuning the surface chemistry of engineered nanostructures for better performance and stability -- 2.3.1 Surface decoration -- 2.3.2 Operational temperature -- 2.3.3 Surface cleaning/resetting -- 2.3.4 Advanced microstructures -- 2.4 Conclusions and prospects -- Acknowledgments -- References -- Chapter 3 Tuning heterointerfaces for high-performance solid oxide cells -- 3.1 Tuning electrode heterointerfaces by multilayering -- 3.1.1 Multilayered perovskite oxides -- 3.1.2 Multilayered perovskite-fluorite oxides -- 3.2 Tuning electrode-interlayer-electrolyte heterointerfaces -- 3.3 Advanced methods for probing heterointerfaces -- 3.3.1 Isotope exchange depth profiling with SIMS analysis -- 3.3.2 Isotope labeling and visualization by SIMS -- 3.3.3 Scanning probe microscopy -- 3.4 Summary and outlook -- References -- Chapter 4 Interface engineering for highly active and stable solid oxide cell electrodes -- 4.1 An overview of solid oxide cells -- 4.1.1 Air electrodes -- 4.1.2 The fuel electrode -- 4.2 Electrode degradation -- 4.2.1 Air electrode degradation -- 4.2.2 Fuel electrode degradation -- 4.3 The influence of heterointerfaces in air electrodes -- 4.3.1 The performance of SOCs with heterostructured air electrodes -- 4.3.2 The role of heterointerfaces in air electrodes -- 4.4 The influence of heterointerfaces in fuel electrodes -- 4.4.1 The performance of SOCs with heterostructured fuel electrodes -- 4.4.2 The role of heterointerfaces in fuel electrodes -- 4.5 Conclusions -- References -- Chapter 5 Nanostructuring the electrodes of solid oxide cells via atomic layer deposition -- 5.1 Introduction -- 5.2 The atomic layer deposition process -- 5.3 The applications of atomic layer deposition in the porous electrodes of solid oxide cells -- 5.3.1 Surface modification of OEs -- 5.3.2 Modifications to SOC fuel electrodes.

5.4 Application in dense electrolytes -- 5.5 The limitations of ALD in overcoating porous media -- 5.6 Summary and outlook -- References -- Chapter 6 Novel electrode materials and nano-oxide composite electrolytes -- 6.1 Introduction -- 6.2 Lithium compound ceramic fuel cells -- 6.2.1 Introduction to lithium compound ceramic fuel cells -- 6.2.2 The structural composition of lithium compound ceramic fuel cells -- 6.2.3 The electrochemical performance of lithium compound electrode ceramic fuel cells -- 6.3 The influence of lithium compound electrodes -- 6.3.1 Reasons for the high ionic conductivity of the electrolytes in lithium compound electrode ceramic fuel cells -- 6.3.2 The influence of Ni0.8Co0.15Al0.05LiO2 electrodes on cell performance -- 6.3.3 The effects of different lithium compound electrodes -- 6.4 The effects of the operational temperature on the electrochemical performance of lithium compound electrode ceramic fuel cells -- 6.4.1 A sudden drop in the electrolyte ionic conductivity at low temperatures -- 6.4.2 The effect of the initial operating temperature on the electrochemical performance of lithium compound electrode ceramic fuel cells -- 6.5 Conducted carriers and the corresponding transference numbers in electrolytes -- 6.6 The durability of lithium compound electrode ceramic fuel cells -- 6.7 Current issues and future research directions for lithium compound electrode ceramic fuel cells -- References -- Chapter 7 Tailoring nanostructured fuel electrode materials for solid oxide cells through redox exsolution -- 7.1 The concept of exsolution and its development -- 7.2 Exsolution vs. infiltration -- 7.3 Tailoring material morphologies and functionalities through exsolution -- 7.3.1 The thermodynamics and driving forces of exsolution -- 7.3.2 Controlling factors for the exsolution process.

7.4 Examples of the use of exsolution in solid oxide cells -- 7.4.1 Metal and metal alloy exsolution -- 7.4.2 Metal and metal oxide exsolution -- 7.5 Advances and outlook -- References -- Chapter 8 Engineering nanostructured fuel electrodes for high-performance, durable SOCs through infiltration -- 8.1 Introduction -- 8.2 State-of-the-art SOC fuel electrodes -- 8.3 Introduction to infiltration -- 8.3.1 The structures of the infiltrated materials -- 8.3.2 Methods of infiltration -- 8.3.3 Processing parameters -- 8.4 Infiltrated fuel electrodes -- 8.4.1 Cermet-based electrodes -- 8.4.2 Oxide-based electrodes -- 8.5 Conclusions and outlook -- References -- Chapter 9 The use of anisotropic microstructures to modify solid oxide cell electrodes -- 9.1 General guidelines for the design of solid oxide cell electrodes -- 9.1.1 Theoretical approach to electrode design -- 9.1.2 Modifications to the electrolyte-electrode interface or the electrode microstructure -- 9.2 Numerical studies of modifications to the interfacial structure -- 9.3 The fabrication and manufacture of structures at the electrolyte-electrode interface -- 9.3.1 The cutting approach -- 9.3.2 Additive approach -- 9.3.3 Molding -- 9.3.4 Other approaches -- 9.4 The fabrication of microstructures to enhance gas diffusion -- 9.5 Summary -- References -- Chapter 10 Synchrotron x-ray radiation for solid oxide cell material characterization -- 10.1 Introduction -- 10.2 Reconstructing electrode microstructures using x-ray computed tomography -- 10.2.1 A brief description of XCT techniques -- 10.2.2 Illustrations using representative studies -- 10.3 Advanced x-ray spectroscopy and scattering techniques for structural and chemical analyses -- 10.3.1 X-ray fluorescence and diffraction -- 10.3.2 X-ray photoelectron spectroscopy and x-ray absorption spectroscopy -- 10.4 Conclusions -- References.
Abstract:
This book brings together the latest research by top international research groups developing nanoengineered materials for solid oxide cells, focusing on novel fabrication techniques and cutting-edge characterization tools as well as issues and challenges for the successful integration of the nanoengineering approach for practical cells.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: