Cover image for Thermodynamics and Statistical Mechanics : An Introduction for Physicists and Engineers.
Thermodynamics and Statistical Mechanics : An Introduction for Physicists and Engineers.
Title:
Thermodynamics and Statistical Mechanics : An Introduction for Physicists and Engineers.
Author:
Bano Zain, Samya.
ISBN:
9780750346085
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (372 pages)
Series:
IOP Ebooks Series
Contents:
Intro -- Preface -- Acknowledgments -- Author biography -- Samya Zain -- Chapter 1 Introduction and background -- 1.1 Thermodynamics: what is it all about? -- 1.2 Thermodynamics: a very brief introduction -- 1.2.1 The steam engine -- 1.2.2 Development of laws of thermodynamics -- 1.2.3 Branches of thermodynamics -- 1.2.4 Classical thermodynamics -- 1.2.5 Statistical thermodynamics -- 1.3 Dimensions and units -- 1.3.1 The SI system -- 1.3.2 SI unit prefixes -- 1.3.3 SI and English units -- 1.4 Thermodynamic systems -- 1.5 Temperature -- 1.5.1 So what is temperature? -- 1.6 Temperature scales -- 1.6.1 Thermometer -- 1.6.2 Measuring temperatures -- 1.6.3 Accepted temperature scales -- 1.7 Zeroth law of thermodynamics -- 1.7.1 Equilibrium -- 1.7.2 Thermal equilibrium -- 1.7.3 Zeroth law of thermodynamics -- 1.8 Thermal expansion -- 1.8.1 Coefficient of thermal expansion -- 1.8.2 Linear expansion in solids -- 1.8.3 Expansion in isotropic materials -- 1.8.4 Bimetallic strip -- 1.9 Pressure -- 1.9.1 SI unit of pressure -- 1.9.2 Variation of pressure in with depth -- 1.9.3 Commonly used pressures -- 1.9.4 Pascal's principle -- 1.9.5 Pressure in solids -- Further reading -- Chapter 2 Basic ideas of thermodynamics -- 2.1 Scope of thermodynamics -- 2.1.1 What is heat? -- 2.2 Thermodynamic processes -- 2.2.1 What is a process? -- 2.2.2 The steady-flow process -- 2.3 State properties of a system -- 2.3.1 Equation of state -- 2.3.2 Types of properties of a system -- 2.3.3 Specific and molal specific properties -- 2.4 Energy -- 2.5 The story of thermodynamics -- 2.5.1 The story of 23 sugar cubes -- 2.5.2 The story of jelly beans -- 2.5.3 The story gets cryptic -- 2.5.4 Law of conservation of energy -- 2.5.5 Law of conservation of energy equation-decoded -- 2.5.6 What exactly is U? -- 2.5.7 Ultimate test for conservation of energy.

2.5.8 When all is said and done -- 2.5.9 Energy-the definition? -- 2.6 Temperature, heat, and work -- 2.6.1 Work versus heat-which is which? -- 2.6.2 First law of thermodynamics -- 2.7 Defining 'work done' in thermodynamics -- 2.7.1 A simple device of thermodynamics -- 2.7.2 Compressional or moving boundary work -- 2.7.3 The area under the process curve on a pV diagram -- 2.7.4 Work done in cyclical transformations or processes -- 2.7.5 Boundary work for various processes -- 2.8 Defining heat transfer -- 2.8.1 Heat transfer processes -- 2.9 Choosing an appropriate system -- Further reading -- Chapter 3 State properties of systems -- 3.1 Thermodynamic state of a system -- 3.1.1 The state of various systems -- 3.1.2 Equilibrium state -- 3.1.3 Transformations in the state of a system -- 3.2 Heat capacity and specific heat -- 3.2.1 Heat capacity -- 3.2.2 Types of heat capacities -- 3.3 Specific heat capacity -- 3.3.1 Specific heat capacities of various substances -- 3.3.2 Calorimetry -- 3.4 Latent heat of transformation -- 3.4.1 Phase transformation -- 3.4.2 Latent heat -- 3.5 Enthalpy -- 3.5.1 The usefulness of enthalpy -- 3.5.2 Heat capacity and enthalpy -- 3.5.3 Enthalpy of formation -- 3.6 Determining energy (ΔU) and enthalpy (ΔH) -- Further reading -- Chapter 4 The ideal gas -- 4.1 Experimental gas laws -- 4.2 The ideal gas -- 4.2.1 Properties of an ideal gas -- 4.2.2 Ideal gas law -- 4.3 Microscopic model of ideal gas -- 4.4 State properties of an ideal gas -- 4.4.1 Internal energy (ΔU) in ideal gases -- 4.4.2 Heat capacity for an ideal gas -- 4.4.3 Heat capacity at constant pressure (CP) -- 4.4.4 Relationship between CV and CP -- 4.4.5 Specific heat ratio -- 4.4.6 Enthalpy change (ΔH) in ideal gases -- 4.5 Various processes ideal gas can undergo -- 4.5.1 Work done 'on' or 'by' an ideal gas -- 4.5.2 Ideal gas undergoing a cyclic process.

4.5.3 Ideal gas undergoing a free-expansion process -- 4.5.4 Ideal gas undergoing a constant volume process -- 4.5.5 Ideal gas undergoing a constant pressure process -- 4.5.6 Ideal gas undergoing an isothermal process -- 4.5.7 Ideal gas undergoing an adiabatic process -- 4.6 Summary -- Further reading -- Chapter 5 Second and Third laws of thermodynamics -- 5.1 The Second law of thermodynamics -- 5.1.1 Story of a peddler man -- 5.1.2 Visualizing entropy -- 5.2 Officially defining entropy -- 5.2.1 Entropy principle -- 5.2.2 Change in entropy of a system -- 5.2.3 Macroscopic view of entropy of the system -- 5.2.4 Second law of thermodynamics -- 5.2.5 'Quantity' versus 'quality' of energy -- 5.2.6 Entropy balance relation -- 5.2.7 Special cases -- 5.3 Entropy as a property of state for an ideal gas -- 5.3.1 Change in entropy for an ideal gas at constant pressure -- 5.3.2 Change in entropy for an ideal gas at constant volume -- 5.3.3 Change in entropy for an ideal gas under isothermal processes -- 5.3.4 Peddler man again -- 5.4 Thermodynamic identity -- 5.4.1 Mechanical equilibrium -- 5.5 Third law of thermodynamics -- 5.5.1 Residual entropy -- 5.5.2 Another statement of Third law -- 5.6 Finally … -- Further reading -- Chapter 6 Application of the laws of thermodynamics -- 6.1 Introduction -- 6.2 Thermodynamic cycles -- 6.2.1 Types of thermodynamic cycles -- 6.3 Heat-transfer-to-power cycles -- 6.3.1 Reservoir -- 6.3.2 A basic heat engine -- 6.3.3 Laws of thermodynamics revisited for engines -- 6.3.4 Efficiency (η) of a heat engine -- 6.4 Carnot cycle -- 6.4.1 Carnot's idea -- 6.4.2 Processes in a Carnot cycle -- 6.4.3 Efficiency of Carnot cycle -- 6.4.4 Carnot's conclusions -- 6.5 Fuels and combustion processes -- 6.5.1 Distillation process -- 6.5.2 Combustion process -- 6.5.3 Actual combustion processes.

6.5.4 Enthalpy consideration in a combustion process -- Further reading -- Chapter 7 Work-to-heat transfer cycle -- 7.1 Work-to-heat transfer cycles -- 7.1.1 Refrigeration cycle -- 7.1.2 Refrigerant -- 7.1.3 Reverse Carnot cycle -- 7.2 A refrigerator -- 7.2.1 Efficiency of a refrigerator -- 7.2.2 Real refrigerators -- 7.2.3 The pV graph for a refrigerator -- 7.2.4 Other refrigeration cycles -- 7.3 Air conditioning systems -- 7.3.1 Parts of an air conditioning system -- 7.3.2 A real air conditioning cycle -- 7.4 Icemaker and ice generator -- 7.4.1 Artificial ice making process -- 7.5 Geothermal heat pumps -- Further reading -- Chapter 8 Heat transfer-to-power cycle I -- 8.1 Heat transfer-to-power cycle -- 8.1.1 Idealizations and simplifications for engine operation -- 8.1.2 Reciprocating engine -- 8.1.3 Mean effective pressure (MEP) -- 8.2 Otto engine cycle -- 8.2.1 Thermal efficiency for a real Otto cycle -- 8.2.2 Internal combustion engine -- 8.3 Diesel engine -- 8.4 The ideal cycle for a gas-turbine engine: Brayton cycle -- 8.4.1 Back work ratio -- 8.4.2 Major applications of gas-turbine engines -- 8.4.3 Ideal Brayton cycle -- 8.4.4 Real gas-turbine cycles -- 8.4.5 Brayton cycle with regeneration -- 8.4.6 Jet engines -- 8.4.7 Nuclear power plants -- Further reading -- Chapter 9 Heat transfer-to-power cycle II -- 9.1 Stirling engines -- 9.1.1 Regenerator -- 9.1.2 Steps of a Stirling cycle -- 9.1.3 Actual Stirling engine -- 9.1.4 Efficiency of a Stirling engine -- 9.1.5 Types of Stirling engines -- 9.1.6 Advantage of ideal Stirling cycle -- 9.2 Ericsson cycle -- 9.2.1 Comparing Carnot cycle, Stirling cycle and Ericsson cycle -- 9.3 Rankine cycle -- 9.3.1 Steam engine -- 9.3.2 Steps in a Rankine cycle -- 9.3.3 Back work ratio (BWR) -- 9.4 Steam power plant -- 9.4.1 A typical power plant -- 9.5 Comparing engines -- Further reading.

Chapter 10 Chemical thermodynamics -- 10.1 Substances and phases of matter -- 10.1.1 Parts of chemical thermodynamics -- 10.2 Equilibrium states of systems -- 10.2.1 Physical meaning of chemical potential -- 10.2.2 Physical meanings of equilibria -- 10.3 Thermodynamic potentials -- 10.3.1 Internal energy (U) -- 10.3.2 Enthalpy (H) -- 10.3.3 Helmholtz free energy (F) -- 10.3.4 Gibbs free energy (G) -- 10.3.5 Difference between Helmholtz energy (F) and Gibbs free energy (G) -- 10.4 Change in Helmholtz energy (ΔF) and Gibbs free energy (ΔG) -- 10.5 Thermodynamic potentials and chemical reactions -- 10.5.1 Standard enthalpy changes and the standard heat of reaction (ΔH°) -- 10.5.2 Hess's law -- 10.5.3 Formation reaction -- 10.5.4 Equilibrium law -- 10.5.5 Gibbs free energy at standard state -- 10.5.6 Gibbs free energy at standard state -- 10.5.7 Gibbs free energy at other temperatures -- 10.5.8 Gibbs free energy and equilibrium -- 10.5.9 Gibbs free energy and chemical potential -- 10.6 Practical application of chemical thermodynamics -- 10.6.1 Phase transformations -- 10.6.2 Clausius-Clapeyron relation -- 10.6.3 Electrolysis -- 10.6.4 Fuel cells -- Further reading -- Chapter 11 Statistical mechanics and thermodynamics -- 11.1 Types of mechanics -- 11.2 Development of statistical thermodynamics -- 11.2.1 Introduction to statistical mechanics -- 11.2.2 Equilibrium statistical mechanics -- 11.3 Statistical description of physical systems -- 11.3.1 Energy states and energy levels in quantum mechanics -- 11.3.2 A free particle in a cubical box -- 11.4 Description of a system in statistical mechanics -- 11.4.1 Density of states -- 11.5 Statistical entropy -- 11.5.1 Does Maxwell's demon really violate the Second law? -- 11.5.2 Number of ensembles that are truly different -- 11.5.3 Entropy in statistical thermodynamics.

11.5.4 Redefining the Second law of thermodynamics.
Abstract:
This course text provides an accessible introduction to thermodynamics and statistical mechanics, at a level that is suitable for both physics and engineering majors. The book acts as a core text for undergraduate courses, particularly for students who find the topics challenging.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: