
Hot Carriers in Semiconductors.
Title:
Hot Carriers in Semiconductors.
Author:
Ferry, David K.
ISBN:
9780750345897
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (442 pages)
Series:
IOP Ebooks Series
Contents:
Intro -- Preface -- Author biography -- David K Ferry -- Chapter 1 Introduction -- 1.1 Some general observations -- 1.1.1 Time scales -- 1.1.2 Velocity and mobility -- 1.1.3 Inter-valley scattering -- 1.2 Optically excited hot carriers -- 1.3 Hot carriers in devices -- 1.3.1 FET structures -- 1.3.2 The hot carrier solar cell -- 1.4 What is in this book -- References -- Chapter 2 High electric field transport -- 2.1 Velocity and mobility -- 2.1.1 Saturated velocity -- 2.1.2 Role of the phonons -- 2.1.3 Distribution functions -- 2.2 Transient transport -- 2.3 Inter-valley scattering -- 2.3.1 Symmetry breaking in equivalent valleys -- 2.3.2 Transfer between non-equivalent valleys -- 2.3.3 Inter-valley transfer in devices -- 2.4 Impact ionization and breakdown -- 2.4.1 The energy threshold -- 2.4.2 The ionizing collision -- 2.4.3 Ballistic versus diffusive ionization -- 2.5 Microwave studies -- 2.5.1 Probing with small microwave fields -- 2.5.2 High microwave fields -- 2.5.3 THz transistors -- 2.6 Ballistic devices -- 2.7 Real-space transfer -- References -- Chapter 3 Carrier heating at low temperature -- 3.1 Early work -- 3.2 Phase-breaking -- 3.2.1 Weak localization -- 3.2.2 Shubnikov-de Haas experiments -- 3.3 Energy relaxation time -- 3.4 Effects in lower dimensions -- 3.4.1 Quantum dots -- 3.4.2 Quantum wires -- 3.5 Some different systems -- 3.5.1 GaP -- 3.5.2 HgTe topological insulator -- 3.5.3 Group III-nitrides -- 3.5.4 Graphene -- 3.6 Magnetophonon resonance -- References -- Chapter 4 Optical carrier heating -- 4.1 Oscillatory photoconductivity -- 4.2 Free-carrier optics -- 4.2.1 Terahertz studies -- 4.2.2 Hot carriers and the quantum Hall effect -- 4.2.3 Landau level emission -- 4.2.4 Inter-sub-band emission -- 4.3 Optical absorption -- 4.4 Ultrafast excitation studies -- 4.4.1 Hot carrier luminescence.
4.4.2 Measuring the electron distribution -- 4.4.3 Overshoot velocity -- 4.5 Real-space transfer -- References -- Chapter 5 Nonequilibrium phonons -- 5.1 The nature of the problem -- 5.1.1 The phonon spectrum -- 5.1.2 Layered compounds -- 5.1.3 Alloys -- 5.2 Acoustic spectroscopy -- 5.3 Measuring the nonequilibrium phonons -- 5.3.1 Raman scattering -- 5.3.2 Ultrafast experiments -- 5.3.3 Ultrafast diffraction -- 5.4 Rise and fall of the phonons -- 5.4.1 The phonon cascade -- 5.4.2 Phonon bottleneck -- 5.4.3 Anharmonic decay -- 5.4.4 Piezoelectric decay -- 5.4.5 Phonon lifetime -- 5.4.6 Nature of the nonequilibrium population -- 5.5 Measuring the lifetime -- 5.5.1 Zinc-blende materials -- 5.5.2 Wurtzite material -- 5.5.3 Layered compounds -- 5.5.4 Scaling the optical phonon lifetime -- References -- Chapter 6 Seeking the distribution function -- 6.1 The relaxation time approximation -- 6.2 Expanding in Legendre polynomials -- 6.2.1 Legendre differential equations -- 6.2.2 Extension to optical modes -- 6.3 The drifted Maxwellian distribution -- 6.3.1 The generic equation -- 6.3.2 The balance equations -- 6.3.3 Polar optical scattering -- 6.4 The energy diffusion equations -- 6.4.1 Equations in energy space -- 6.4.2 The coefficients -- 6.4.3 Non-trivial solutions -- 6.5 Low-dimensional systems -- 6.5.1 The energy dissipation equation -- 6.5.2 Scattering exponents -- 6.5.3 Graphene -- 6.6 Plasmon interactions -- 6.6.1 Low-dimensional material -- 6.6.2 Graphene -- Appendix A. The Lindhard function -- References -- Chapter 7 The ensemble Monte Carlo method -- 7.1 The path integral -- 7.2 The Monte Carlo process -- 7.2.1 Free flight generation -- 7.2.2 Scattering -- 7.2.3 Time synchronization -- 7.2.4 Rejection technique and state filling -- 7.3 Building a code -- 7.3.1 The blocks -- 7.3.2 Examples -- 7.4 Molecular dynamics and Poisson.
7.4.1 A homogeneous semiconductor -- 7.4.2 Solutions with Poisson's equation -- 7.5 Real-space transfer -- 7.6 Full band Monte Carlo -- 7.7 Monte Carlo in device simulation -- References -- Chapter 8 Quantum transport -- 8.1 Modes and the Landauer formula -- 8.2 Transport with the Schrödinger equation -- 8.2.1 The scattering matrix -- 8.2.2 Self-energy -- 8.2.3 The MOSFET -- 8.3 The density matrix -- 8.3.1 The Liouville and Bloch equations -- 8.3.2 The quantum kinetic equation -- 8.3.3 The Barker-Ferry equation -- 8.4 Nonequilibrium Green's functions -- 8.4.1 Equilibrium Green's functions -- 8.4.2 The interaction representation and impurity scattering -- 8.4.3 Conductivity and the Bethe-Salpeter equation -- 8.4.4 NEGF -- 8.4.5 NEGF in hot carrier devices -- 8.5 Wigner functions -- 8.5.1 Simulations with the Wigner function -- 8.5.2 Wigner Monte Carlo -- 8.5.3 Scattering in Wigner functions -- 8.5.4 Wigner function in devices -- 8.6 Some final comments -- References.
Abstract:
This research and reference text provides up-to-date coverage of the latest research on hot carriers in semiconductors, with a focus on the background, theoretical approaches, measurements and physical understanding required to engage with the field. Pitched at an introductory level, it equips researchers transitioning from optics to fully understand the role of hot carriers in semiconductors, and is a core text for graduate courses in hot carrier phenomena.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Genre:
Electronic Access:
Click to View