Cover image for Quantum Computing (Second Edition) : A Pathway to Quantum Logic Design.
Quantum Computing (Second Edition) : A Pathway to Quantum Logic Design.
Title:
Quantum Computing (Second Edition) : A Pathway to Quantum Logic Design.
Author:
Babu, Hafiz Hasan.
ISBN:
9780750356831
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (363 pages)
Series:
IOP Ebooks Series
Contents:
Intro -- Preface to the Second Edition -- Acknowledgments -- Author biography -- Dr Hafiz Md Hasan Babu -- Acronyms -- Outline placeholder -- An overview of quantum circuits -- Chapter 1 Quantum logic -- 1.1 Overview -- 1.2 Motivations towards quantum computing -- 1.3 The relationship between reversible and quantum logic -- 1.4 Quantum computers -- 1.5 The working principles of quantum computers -- 1.6 The evolution of quantum computers -- 1.7 Why pursue quantum computing? -- 1.8 Summary -- Critical thinking questions -- References -- Chapter 2 Basic definitions of quantum logic -- 2.1 The quantum qubit -- 2.2 The quantum gate -- 2.2.1 The quantum Feynman gate -- 2.2.2 The quantum Tofolli gate -- 2.2.3 The quantum Fredkin gate -- 2.3 Garbage outputs -- 2.4 Constant inputs -- 2.5 Area -- 2.6 Power -- 2.7 Delay -- 2.8 Depth -- 2.9 Quantum cost -- 2.10 Quantum gate calculation complexity -- 2.11 Summary -- Critical thinking questions -- References -- Chapter 3 The quantum qubit string comparator -- 3.1 Characteristics of a quantum comparator -- 3.2 The quantum magnitude comparator -- 3.3 The design of a quantum comparator -- Guess -- 3.3.1 Example -- 3.4 Summary -- Critical thinking questions -- References -- Chapter 4 The quantum full-adder and subtractor -- 4.1 The quantum adder -- 4.1.1 The quantum full-adder -- 4.2 The quantum subtractor -- 4.2.1 The quantum half-subtractor -- 4.2.2 The quantum full-subtractor -- 4.3 Summary -- Critical thinking questions -- References -- Chapter 5 The quantum multiplexer and demultiplexer -- 5.1 The quantum multiplexer -- 5.1.1 The quantum 2-to-1 multiplexer -- 5.1.2 Quantum 4-to-1 multiplexer -- 5.1.3 The quantum 2n-to-1 multiplexer -- 5.2 The quantum demultiplexer -- 5.2.1 The quantum 1-to-2 demultiplexer -- 5.2.2 The quantum 1-to-4 demultiplexer -- 5.2.3 Quantum 1-to-2n demultiplexer -- 5.3 Summary.

Critical thinking questions -- References -- Chapter 6 The quantum adder circuits -- 6.1 The quantum carry skip adder -- 6.2 The quantum comparison circuit -- 6.3 The quantum 2-to-1 multiplier circuit -- 6.4 The design of a quantum carry skip adder -- 6.4.1 The four-qubit quantum carry skip adder -- 6.4.2 The n-qubit quantum carry skip adder -- 6.4.3 Calculation of the area and power of a quantum carry skip adder circuit -- 6.4.4 Complexity of the n-qubit quantum carry skip adder circuit -- 6.5 The quantum BCD adder -- 6.6 Summary -- Critical thinking questions -- References -- Chapter 7 The quantum multiplier-accumulator -- 7.1 The importance of a quantum multiplier-accumulator -- 7.2 The quantum multiplication technique -- 7.3 Reduction of the garbage outputs and ancillary inputs of quantum circuits -- 7.4 The design of a quantum multiplier circuit -- 7.4.1 The quantum ANDing circuit -- 7.4.2 The quantum full-adder circuit -- 7.4.3 The n × n-qubit quantum multiplier -- 7.5 Accumulator -- 7.6 Summary -- Critical thinking questions -- References -- Chapter 8 The quantum divider -- 8.1 Division algorithms -- 8.1.1 Classical integer division algorithms -- 8.1.2 Quantum integer division algorithms -- 8.2 The importance of the quantum divider -- 8.3 The tree-based quantum division technique -- 8.3.1 Definitions and properties of the division technique -- 8.3.2 The algorithm of the division technique -- 8.4 The design of a quantum divider circuit -- 8.4.1 A technique to minimize the number of ancillary inputs in the quantum circuit realization -- 8.4.2 The components of the quantum divider circuit -- 8.5 Summary -- Critical thinking questions -- References -- Chapter 9 The quantum BCD priority encoder -- 9.1 The properties of a quantum encoder -- 9.2 The design of a quantum BCD priority encoder circuit -- 9.2.1 The quantum BCD priority encoder circuit.

9.2.2 Analysis of the properties of the encoder circuit -- 9.3 Summary -- Critical thinking questions -- References -- Chapter 10 The quantum decoder -- 10.1 The characteristics of a quantum decoder -- 10.2 The design of a quantum decoder -- 10.2.1 The quantum decoder circuit -- 10.2.2 Analysis of the properties of the circuits -- 10.3 Summary -- Critical thinking questions -- References -- Chapter 11 The quantum square root circuit -- 11.1 The properties of a quantum square root function -- 11.2 The design of a quantum square root circuit -- 11.2.1 The quantum adder/subtractor circuit -- 11.2.2 The quantum square root circuit -- 11.2.3 Analysis of the properties of the quantum circuit -- 11.3 Summary -- Critical thinking questions -- References -- Chapter 12 Quantum latches and counter circuits -- 12.1 The properties of quantum latches -- 12.2 The design of quantum latches -- 12.2.1 The quantum SR latch -- 12.2.2 The quantum D latch -- 12.2.3 The quantum T latch -- 12.2.4 The quantum J-K latch -- 12.3 The properties of quantum counter circuits -- 12.4 The design of quantum counters -- 12.4.1 The quantum asynchronous counter -- 12.4.2 The quantum synchronous counter -- 12.5 Summary -- Critical thinking questions -- References -- Chapter 13 The quantum controlled ternary barrel shifter -- 13.1 Ternary quantum gates -- 13.1.1 The quantum ternary Peres gate -- 13.1.2 The quantum ternary modified Fredkin gate -- 13.2 The properties of ternary quantum circuits -- 13.3 The quantum barrel shifter -- 13.3.1 Logical right shift -- 13.3.2 Arithmetic right shift -- 13.3.3 Right rotation -- 13.3.4 Logical left shift -- 13.3.5 Arithmetic left shift -- 13.3.6 Left rotation -- 13.4 The design of a quantum ternary barrel shifter -- 13.4.1 The optimized quantum ternary barrel shifter -- 13.4.2 The properties of the designed circuit -- 13.5 Summary.

Critical thinking questions -- References -- Chapter 14 Quantum RAM, quantum ROM, and quantum cache memory -- 14.1 The quantum n-to-2n decoder -- 14.2 The quantum memory unit -- 14.3 The construction procedure of QRAM -- 14.4 Quantum ROM -- 14.5 Quantum cache memory -- 14.6 Summary -- Critical thinking questions -- References -- Chapter 15 The quantum arithmetic logic unit -- 15.1 The design of a quantum ALU -- 15.1.1 The first approach -- 15.1.2 The second approach -- 15.1.3 The third approach -- 15.2 Summary -- Critical thinking questions -- References -- Chapter 16 Quantum programmable logic devices -- 16.1 The quantum programmable array logic -- 16.1.1 The design procedure and working principles of quantum PAL -- 16.1.2 The importance and applications of quantum PAL -- 16.2 The quantum programmable logic array -- 16.2.1 The design procedure and working principles of quantum PLAs -- 16.2.2 The importance and applications of quantum PLAs -- 16.3 The quantum complex programmable logic device -- 16.3.1 The design procedure and working principles of quantum CPLDs -- 16.3.2 The importance and applications of quantum CPLD -- 16.4 The quantum field-programmable gate array -- 16.4.1 The design procedure and working principles of quantum FPGAs -- 16.4.2 The importance and applications of FPGAs -- 16.5 Summary -- Critical thinking questions -- References -- Chapter 17 The quantum processor circuit -- 17.1 Introduction -- 17.2 Basic definitions -- 17.3 The block diagram of a quantum processor -- 17.4 The basic components of a quantum processor -- 17.4.1 The quantum RAM -- 17.4.2 The quantum instruction register -- 17.4.3 The quantum program counter -- 17.4.4 The quantum decoder -- 17.4.5 The quantum multiplexer -- 17.4.6 The quantum arithmetic logic unit -- 17.4.7 The quantum accumulator -- 17.5 Applications -- 17.6 Summary -- Critical thinking questions.

References -- Chapter 18 Applications of quantum computing technology -- 18.1 Optimization -- 18.1.1 The Roswell Park Cancer Institute -- 18.1.2 Volkswagen group -- 18.1.3 Recruit Communications -- 18.2 Machine learning -- 18.2.1 QxBranch -- 18.2.2 Los Alamos National Laboratory -- 18.2.3 NASA -- 18.3 Biomedical simulations -- 18.4 Financial services -- 18.5 Computational chemistry -- 18.6 Logistics and scheduling -- 18.7 Cyber security -- 18.8 Circuit, software, and system fault simulation -- 18.9 Weather forecasting -- 18.10 Summary -- Critical thinking questions -- References -- Outline placeholder -- An overview of quantum fault-tolerant circuits -- Chapter 19 Quantum fault-tolerant circuits -- 19.1 The need for quantum fault-tolerant circuits -- 19.2 The fault-tolerant quantum adder -- 19.2.1 The fault-tolerant full-adder -- 19.3 The fault-tolerant multiplier -- 19.3.1 The fault-tolerant signed multiplier -- 19.4 The quantum fault-tolerant integer divider -- 19.4.1 The restoring division algorithm -- 19.4.2 The subtractor module -- 19.4.3 The conditional addition operation module -- 19.4.4 Quantum restoring integer division circuitry -- 19.5 Summary -- Critical thinking questions -- References -- Outline placeholder -- An overview of quantum-dot cellular automata -- Chapter 20 Quantum-dot cellular automata -- 20.1 Fundamentals of QCA circuits -- 20.1.1 Area -- 20.1.2 Delay -- 20.1.3 Kink energy -- 20.1.4 Power -- 20.1.5 Overall cost -- 20.2 The QCA cell -- 20.3 Information and data propagation -- 20.4 Basic QCA elements and gates -- 20.4.1 The QCA majority voter -- 20.4.2 The QCA AND gate -- 20.4.3 The QCA OR gate -- 20.4.4 The QCA NOT gate -- 20.4.5 The QCA wire -- 20.5 The QCA clock -- 20.5.1 Special cell arrangements and symmetric cells -- 20.5.2 The NOT gate clock zones -- 20.5.3 The majority voter clock zones -- 20.6 Summary.

Critical thinking questions.
Abstract:
This comprehensive second edition will allow readers to develop a working understanding of quantum computing as part of their general education or as a prelude to independent research on quantum computing.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: