Cover image for An Introduction to Infinite-Dimensional Analysis
An Introduction to Infinite-Dimensional Analysis
Title:
An Introduction to Infinite-Dimensional Analysis
Author:
Prato, Giuseppe. author.
ISBN:
9783540290216
Personal Author:
Physical Description:
X, 208 p. online resource.
Contents:
Gaussian measures in Hilbert spaces -- The Cameron–Martin formula -- Brownian motion -- Stochastic perturbations of a dynamical system -- Invariant measures for Markov semigroups -- Weak convergence of measures -- Existence and uniqueness of invariant measures -- Examples of Markov semigroups -- L2 spaces with respect to a Gaussian measure -- Sobolev spaces for a Gaussian measure -- Gradient systems.
Abstract:
In this revised and extended version of his course notes from a 1-year course at Scuola Normale Superiore, Pisa, the author provides an introduction – for an audience knowing basic functional analysis and measure theory but not necessarily probability theory – to analysis in a separable Hilbert space of infinite dimension. Starting from the definition of Gaussian measures in Hilbert spaces, concepts such as the Cameron-Martin formula, Brownian motion and Wiener integral are introduced in a simple way. These concepts are then used to illustrate some basic stochastic dynamical systems (including dissipative nonlinearities) and Markov semi-groups, paying special attention to their long-time behavior: ergodicity, invariant measure. Here fundamental results like the theorems of Prokhorov, Von Neumann, Krylov-Bogoliubov and Khas'minski are proved. The last chapter is devoted to gradient systems and their asymptotic behavior.
Added Corporate Author:
Holds: Copies: