
A posteriori error estimation techniques for finite element methods
Title:
A posteriori error estimation techniques for finite element methods
Author:
Verfürth, Rüdiger, author.
ISBN:
9780191668760
9780191668777
9780191758485
Personal Author:
Publication Information:
Oxford, UK : Oxford University Press, 2013.
Physical Description:
1 online resource (xviii, 393 pages).
Series:
Numerical mathematics and scientific computation
Numerical mathematics and scientific computation.
Contents:
Machine generated contents note: 1.A Simple Model Problem -- 1.1. Motivation and Overview -- 1.2. The Model Problem and its Discretisation -- 1.3. Notations and Auxiliary Results -- 1.4. Residual Estimates -- 1.5.A Vertex-Oriented Residual Error Indicator -- 1.6. Edge Residuals -- 1.7. Auxiliary Local Problems -- 1.8.A Hierarchical Approach -- 1.9. Gradient Recovery -- 1.10. Equilibrated Residuals -- 1.11. Dual Weighted Residuals -- 1.12. The Hyper-Circle Method -- 1.13. Efficiency and Asymptotic Exactness -- 1.14. Convergence of the Adaptive Process I -- 1.15. Summary and Outlook -- 2. Implementation -- 2.1. Mesh-Refinement -- 2.2. Mesh-Coarsening -- 2.3. Mesh-Smoothing -- 2.4. Data Structures -- 2.5. Numerical Examples -- 3. Auxiliary Results -- 3.1. Function Spaces -- 3.2. Finite Element Meshes and Spaces -- 3.3. Trace Inequalities -- 3.4. Poincare and Friedrichs' Inequalities -- 3.5. Interpolation Error Estimates -- 3.6. Inverse Estimates -- 3.7. Decomposition of Affine Functions in LP (0, 1; Y) -- 3.8. Estimation of Residuals -- 4. Linear Elliptic Equations -- 4.1. Abstract Linear Problems -- 4.2. The Model Problem Revisited -- 4.3. Reaction-Diffusion Equations -- 4.4. Convection-Diffusion Equations -- 4.5. Anisotropic Meshes -- 4.6. Non-Smooth Coefficients -- 4.7. Eigenvalue Problems -- 4.8. Mixed Formulation of the Poisson Equation -- 4.9. The Equations of Linear Elasticity -- 4.10. The Stokes Equations -- 4.11. The Bi-harmonic Equation -- 4.12. Non-Conforming Discretisations -- 4.13. Convergence of the Adaptive Process II -- 5. Nonlinear Elliptic Equations -- 5.1. Abstract Nonlinear Problems -- 5.2. Quasilinear Equations of Second Order -- 5.3. Eigenvalue Problems Revisited -- 5.4. The Stationary Navier-Stokes Equations -- 6. Parabolic Equations -- 6.1. The Heat Equation -- 6.2. Time-Dependent Convection-Diffusion Equations -- 6.3. Linear Parabolic Equations of Second Order -- 6.4. The Method of Characteristics -- 6.5. The Time-Dependent Stokes Equations -- 6.6. Nonlinear Parabolic Equations of Second Order -- 6.7. Finite Volume Methods -- 6.8. Convergence of the Adaptive Process III.
Abstract:
A posteriori error estimation techniques are fundamental to the efficient numerical solution of PDEs arising in physical and technical applications. This text gives a unified approach to these techniques and guides graduate students, researchers, and practitioners towards understanding, applying and developing self-adaptive discretization methods.
Genre:
Electronic Access:
EBSCOhost http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=551490