Cover image for Wireless Sensor Networks.
Wireless Sensor Networks.
Title:
Wireless Sensor Networks.
Author:
Akyildiz, Ian F.
ISBN:
9780470515198
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (517 pages)
Series:
Advanced Texts in Communications and Networking Ser. ; v.4

Advanced Texts in Communications and Networking Ser.
Contents:
Contents -- About the Series Editor -- Preface -- 1 Introduction -- 1.1 Sensor Mote Platforms -- 1.1.1 Low-End Platforms -- 1.1.2 High-End Platforms -- 1.1.3 Standardization Efforts -- 1.1.4 Software -- 1.2 WSN Architecture and Protocol Stack -- 1.2.1 Physical Layer -- 1.2.2 Data Link Layer -- 1.2.3 Network Layer -- 1.2.4 Transport Layer -- 1.2.5 Application Layer -- References -- 2 WSN Applications -- 2.1 Military Applications -- 2.1.1 Smart Dust -- 2.1.2 Sniper Detection System -- 2.1.3 VigilNet -- 2.2 Environmental Applications -- 2.2.1 Great Duck Island -- 2.2.2 CORIE -- 2.2.3 ZebraNet -- 2.2.4 Volcano Monitoring -- 2.2.5 Early Flood Detection -- 2.3 Health Applications -- 2.3.1 Artificial Retina -- 2.3.2 Patient Monitoring -- 2.3.3 Emergency Response -- 2.4 Home Applications -- 2.4.1 Water Monitoring -- 2.5 Industrial Applications -- 2.5.1 Preventive Maintenance -- 2.5.2 Structural Health Monitoring -- 2.5.3 Other Commercial Applications -- References -- 3 Factors Influencing WSN Design -- 3.1 Hardware Constraints -- 3.2 Fault Tolerance -- 3.3 Scalability -- 3.4 Production Costs -- 3.5 WSN Topology -- 3.5.1 Pre-deployment and Deployment Phase -- 3.5.2 Post-deployment Phase -- 3.5.3 Re-deployment Phase of Additional Nodes -- 3.6 Transmission Media -- 3.7 Power Consumption -- 3.7.1 Sensing -- 3.7.2 Data Processing -- 3.7.3 Communication -- References -- 4 Physical Layer -- 4.1 Physical Layer Technologies -- 4.1.1 RF -- 4.1.2 Other Techniques -- 4.2 Overview of RF Wireless Communication -- 4.3 Channel Coding (Error Control Coding) -- 4.3.1 Block Codes -- 4.3.2 Joint Source-Channel Coding -- 4.4 Modulation -- 4.4.1 FSK -- 4.4.2 QPSK -- 4.4.3 Binary vs. M-ary Modulation -- 4.5 Wireless Channel Effects -- 4.5.1 Attenuation -- 4.5.2 Multi-path Effects -- 4.5.3 Channel Error Rate -- 4.5.4 Unit Disc Graph vs. Statistical Channel Models.

4.6 PHY Layer Standards -- 4.6.1 IEEE 802.15.4 -- 4.6.2 Existing Transceivers -- References -- 5 Medium Access Control -- 5.1 Challenges for MAC -- 5.1.1 Energy Consumption -- 5.1.2 Architecture -- 5.1.3 Event-Based Networking -- 5.1.4 Correlation -- 5.2 CSMA Mechanism -- 5.3 Contention-Based Medium Access -- 5.3.1 S-MAC -- 5.3.2 B-MAC -- 5.3.3 CC-MAC -- 5.3.4 Other Contention-Based MAC Protocols -- 5.3.5 Summary -- 5.4 Reservation-Based Medium Access -- 5.4.1 TRAMA -- 5.4.2 Other Reservation-Based MAC Protocols -- 5.4.3 Summary -- 5.5 Hybrid Medium Access -- 5.5.1 Zebra-MAC -- References -- 6 Error Control -- 6.1 Classification of Error Control Schemes -- 6.1.1 Power Control -- 6.1.2 Automatic Repeat Request (ARQ) -- 6.1.3 Forward Error Correction (FEC) -- 6.1.4 Hybrid ARQ -- 6.2 Error Control inWSNs -- 6.3 Cross-layer Analysis Model -- 6.3.1 Network Model -- 6.3.2 Expected Hop Distance -- 6.3.3 Energy Consumption Analysis -- 6.3.4 Latency Analysis -- 6.3.5 Decoding Latency and Energy -- 6.3.6 BER and PER -- 6.4 Comparison of Error Control Schemes -- 6.4.1 Hop Length Extension -- 6.4.2 Transmit Power Control -- 6.4.3 Hybrid Error Control -- 6.4.4 Overview of Results -- References -- 7 Network Layer -- 7.1 Challenges for Routing -- 7.1.1 Energy Consumption -- 7.1.2 Scalability -- 7.1.3 Addressing -- 7.1.4 Robustness -- 7.1.5 Topology -- 7.1.6 Application -- 7.2 Data-centric and Flat-Architecture Protocols -- 7.2.1 Flooding -- 7.2.2 Gossiping -- 7.2.3 Sensor Protocols for Information via Negotiation (SPIN) -- 7.2.4 Directed Diffusion -- 7.2.5 Qualitative Evaluation -- 7.3 Hierarchical Protocols -- 7.3.1 LEACH -- 7.3.2 PEGASIS -- 7.3.3 TEEN and APTEEN -- 7.3.4 Qualitative Evaluation -- 7.4 Geographical Routing Protocols -- 7.4.1 MECN and SMECN -- 7.4.2 Geographical Forwarding Schemes for Lossy Links -- 7.4.3 PRADA -- 7.4.4 Qualitative Evaluation.

7.5 QoS-Based Protocols -- 7.5.1 SAR -- 7.5.2 Minimum Cost Path Forwarding -- 7.5.3 SPEED -- 7.5.4 Qualitative Evaluation -- References -- 8 Transport Layer -- 8.1 Challenges for Transport Layer -- 8.1.1 End-to-End Measures -- 8.1.2 Application-Dependent Operation -- 8.1.3 Energy Consumption -- 8.1.4 Biased Implementation -- 8.1.5 Constrained Routing/Addressing -- 8.2 Reliable Multi-Segment Transport (RMST) Protocol -- 8.2.1 Qualitative Evaluation -- 8.3 Pump Slowly, Fetch Quickly (PSFQ) Protocol -- 8.3.1 Qualitative Evaluation -- 8.4 Congestion Detection and Avoidance (CODA) Protocol -- 8.4.1 Qualitative Evaluation -- 8.5 Event-to-Sink Reliable Transport (ESRT) Protocol -- 8.5.1 Qualitative Evaluation -- 8.6 GARUDA -- 8.6.1 Qualitative Evaluation -- 8.7 Real-Time and Reliable Transport (RT)^2 Protocol -- 8.7.1 Qualitative Evaluation -- References -- 9 Application Layer -- 9.1 Source Coding (Data Compression) -- 9.1.1 Sensor LZW -- 9.1.2 Distributed Source Coding -- 9.2 Query Processing -- 9.2.1 Query Representation -- 9.2.2 Data Aggregation -- 9.2.3 COUGAR -- 9.2.4 Fjords Architecture -- 9.2.5 Tiny Aggregation (TAG) Service -- 9.2.6 TinyDB -- 9.3 Network Management -- 9.3.1 Management Architecture for Wireless Sensor Networks (MANNA) -- 9.3.2 Sensor Network Management System (SNMS) -- References -- 10 Cross-layer Solutions -- 10.1 Interlayer Effects -- 10.2 Cross-layer Interactions -- 10.2.1 MAC and Network Layers -- 10.2.2 MAC and Application Layers -- 10.2.3 Network and PHY Layers -- 10.2.4 Transport and PHY Layers -- 10.3 Cross-layer Module -- 10.3.1 Initiative Determination -- 10.3.2 Transmission Initiation -- 10.3.3 Receiver Contention -- 10.3.4 Angle-Based Routing -- 10.3.5 Local Cross-layer Congestion Control -- 10.3.6 Recap: XLP Cross-layer Interactions and Performance -- References -- 11 Time Synchronization.

11.1 Challenges for Time Synchronization -- 11.1.1 Low-Cost Clocks -- 11.1.2 Wireless Communication -- 11.1.3 Resource Constraints -- 11.1.4 High Density -- 11.1.5 Node Failures -- 11.2 Network Time Protocol -- 11.3 Definitions -- 11.4 Timing-Sync Protocol for Sensor Networks (TPSN) -- 11.4.1 Qualitative Evaluation -- 11.5 Reference-Broadcast Synchronization (RBS) -- 11.5.1 Qualitative Evaluation -- 11.6 Adaptive Clock Synchronization (ACS) -- 11.6.1 Qualitative Evaluation -- 11.7 Time Diffusion Synchronization Protocol (TDP) -- 11.7.1 Qualitative Evaluation -- 11.8 Rate-Based Diffusion Protocol (RDP) -- 11.8.1 Qualitative Evaluation -- 11.9 Tiny- and Mini-Sync Protocols -- 11.9.1 Qualitative Evaluation -- 11.10 Other Protocols -- 11.10.1 Lightweight Tree-Based Synchronization (LTS) -- 11.10.2 TSync -- 11.10.3 Asymptotically Optimal Synchronization -- 11.10.4 Synchronization for Mobile Networks -- References -- 12 Localization -- 12.1 Challenges in Localization -- 12.1.1 Physical Layer Measurements -- 12.1.2 Computational Constraints -- 12.1.3 Lack of GPS -- 12.1.4 Low-End Sensor Nodes -- 12.2 Ranging Techniques -- 12.2.1 Received Signal Strength -- 12.2.2 Time of Arrival -- 12.2.3 Time Difference of Arrival -- 12.2.4 Angle of Arrival -- 12.3 Range-Based Localization Protocols -- 12.3.1 Ad Hoc Localization System -- 12.3.2 Localization with Noisy Range Measurements -- 12.3.3 Time-Based Positioning Scheme -- 12.3.4 Mobile-Assisted Localization -- 12.4 Range-Free Localization Protocols -- 12.4.1 Convex Position Estimation -- 12.4.2 Approximate Point-in-Triangulation (APIT) Protocol -- References -- 13 Topology Management -- 13.1 Deployment -- 13.2 Power Control -- 13.2.1 LMST -- 13.2.2 LMA and LMN -- 13.2.3 Interference-Aware Power Control -- 13.2.4 CONREAP -- 13.3 Activity Scheduling -- 13.3.1 GAF -- 13.3.2 ASCENT -- 13.3.3 SPAN -- 13.3.4 PEAS.

13.3.5 STEM -- 13.4 Clustering -- 13.4.1 Hierarchical Clustering -- 13.4.2 HEED -- 13.4.3 Coverage-Preserving Clustering -- References -- 14 Wireless Sensor and Actor Networks -- 14.1 Characteristics ofWSANs -- 14.1.1 Network Architecture -- 14.1.2 Physical Architecture -- 14.2 Sensor-Actor Coordination -- 14.2.1 Requirements of Sensor-Actor Communication -- 14.2.2 Actor Selection -- 14.2.3 Optimal Solution -- 14.2.4 Distributed Event-Driven Clustering and Routing (DECR) Protocol -- 14.2.5 Performance -- 14.2.6 Challenges for Sensor-Actor Coordination -- 14.3 Actor-Actor Coordination -- 14.3.1 Task Assignment -- 14.3.2 Optimal Solution -- 14.3.3 Localized Auction Protocol -- 14.3.4 Performance Evaluation -- 14.3.5 Challenges for Actor-Actor Coordination -- 14.4 WSAN Protocol Stack -- 14.4.1 Management Plane -- 14.4.2 Coordination Plane -- 14.4.3 Communication Plane -- References -- 15 Wireless Multimedia Sensor Networks -- 15.1 Design Challenges -- 15.1.1 Multimedia Source Coding -- 15.1.2 High Bandwidth Demand -- 15.1.3 Application-Specific QoS Requirements -- 15.1.4 Multimedia In-network Processing -- 15.1.5 Energy Consumption -- 15.1.6 Coverage -- 15.1.7 Resource Constraints -- 15.1.8 Variable Channel Capacity -- 15.1.9 Cross-layer Coupling of Functionalities -- 15.2 Network Architecture -- 15.2.1 Single Tier Architectures -- 15.2.2 Multi-tier Architecture -- 15.2.3 Coverage -- 15.3 Multimedia Sensor Hardware -- 15.3.1 Audio Sensors -- 15.3.2 Low-Resolution Video Sensors -- 15.3.3 Medium-Resolution Video Sensors -- 15.3.4 Examples of Deployed Multimedia Sensor Networks -- 15.4 Physical Layer -- 15.4.1 Time-Hopping Impulse Radio UWB (TH-IR-UWB) -- 15.4.2 Multicarrier UWB (MC-UWB) -- 15.4.3 Distance Measurements through UWB -- 15.5 MAC Layer -- 15.5.1 Frame Sharing (FRASH) MAC Protocol -- 15.5.2 Real-Time Independent Channels (RICH) MAC Protocol.

15.5.3 MIMO Technology.
Abstract:
This book presents an in-depth study on the recent advances in Wireless Sensor Networks (WSNs). The authors describe the existing WSN applications and discuss the research efforts being undertaken in this field. Theoretical analysis and factors influencing protocol design are also highlighted. The authors explore state-of-the-art protocols for WSN protocol stack in transport, routing, data link, and physical layers. Moreover, the synchronization and localization problems in WSNs are investigated along with existing solutions. Furthermore, cross-layer solutions are described. Finally, developing areas of WSNs including sensor-actor networks, multimedia sensor networks, and WSN applications in underwater and underground environments are explored. The book is written in an accessible, textbook style, and includes problems and solutions to assist learning. Key Features: The ultimate guide to recent advances and research into WSNs Discusses the most important problems and issues that arise when programming and designing WSN systems Shows why the unique features of WSNs - self-organization, cooperation, correlation -- will enable new applications that will provide the end user with intelligence and a better understanding of the environment Provides an overview of the existing evaluation approaches for WSNs including physical testbeds and software simulation environments Includes examples and learning exercises with a solutions manual; supplemented by an accompanying website containing PPT-slides. Wireless Sensor Networks is an essential textbook for advanced students on courses in wireless communications, networking and computer science. It will also be of interest to researchers, system and chip designers, network planners, technical mangers and other professionals in these fields.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: