Cover image for Plasma Polymer Films.
Plasma Polymer Films.
Title:
Plasma Polymer Films.
Author:
Biederman, Hynek.
ISBN:
9781860945380
Personal Author:
Physical Description:
1 online resource (391 pages)
Contents:
Plasma Polymer Films -- CONTENTS -- PREFACE -- CHAPTER 1 INTRODUCTION Hynek Biederman -- 1.1. History -- 1.2. What is a Plasma Polymer? -- 1.3. Deposition Systems for Plasma Polymerization -- 1.4. Deposition (Plasma) Process Parameters -- 1.5. Models of Plasma Polymerization -- 1.6. Types of Plasma Polymers and their Characterization -- 1.7. Conclusions -- References -- CHAPTER 2 PLASMA DEPOSITION OF FLUOROPOLYMER FILMS IN DIFFERENT GLOW DISCHARGE REGIMES Pietro Favia -- 2.1. Introduction -- 2.2. On the Jargon of PE-CVD Processes -- 2.3. Continuous, Afterglow and Modulated PE-CVD -- 2.3.1. Fluorocarbon Monomers -- 2.4. Diagnostic Techniques for PE-CVD Processes of Fluoropolymers -- 2.4.1. Surface and Bulk Analysis -- 2.4.2. Plasma Diagnostic Techniques -- 2.5. Active Species in Fluorocarbon Plasmas -- 2.5.1. Additives to Drive the F/CFx Density Ratio of a Fluorocarbon Discharge -- 2.6. Relevant Parameters in PE-CVD Processes of Fluoropolymers -- 2.6.1. Ion Bombardment and Substrate Temperature -- 2.6.2. Power, Flow Rate, Pressure and Combined Parameters -- 2.6.3. Distance of the Substrate from the Glow -- 2.6.4. Duty Cycle and Period in Modulated Plasmas -- 2.7. The Activated Growth Model -- 2.8. Applications of Plasma-Deposited Fluoropolymers -- 2.8.1. Wettability of Fluorocarbon Coatings and Applications for Textiles and Paper -- 2.8.2. Biomedical Applications Proposed for Plasma-Deposited Fluoropolymers -- 2.9. Conclusive Remarks -- Acknowledgements -- References -- CHAPTER 3 DEPOSITION OF SILICON CONTAINING FILMS AND FTIR DIAGNOSTICS Yvan Segui and Patrice Raynaud -- 3.1. Introduction -- 3.2. Precursors -- 3.3. Species Detected in Organosilicon Plasmas -- 3.3.1. Optical Emission Spectroscopy (OES) -- 3.3.2. Mass Spectroscopy -- 3.3.3. Infrared Absorbtion Spectroscopy of the Plasma -- 3.3.3.1. Principles of FTIR Diagnostic of the Plasma Phase.

3.3.3.2. The Absorption Spectra -- 3.3.3.3. Quantitative Analysis (Absorption Spectrometry) -- 3.3.3.4. Infrared Diagnostics of Organosilicon Plasma -- 3.4. Open Questions and Conclusions -- 3.4.1. Species in the Gas Phase -- 3.4.2. Interface Plasma-Surface -- Growing Mechanisms -- References -- CHAPTER 4 CORPUSCULAR DIAGNOSTICS OF PLASMA POLYMERIZATION PROCESSES Michael Zeuner -- 4.1. Corpuscular Diagnostics in Plasma Processing -- 4.2. Basic Processes in Particle Interaction -- 4.2.1. Gas Discharge Phenomena -- 4.2.2. Plasma Sheath Effects -- 4.2.3. Surface Interaction -- 4.3. Experimental Equipment for Corpuscular Diagnostics -- 4.3.1. Common Particle Collection by Film Deposition -- 4.3.2. Mass Spectrornetrical Methods -- 4.3.3. Energy Filter Techniques -- 4.4. Neutral Species Detection -- 4.4.1. Neutral Flux Detection and Partial Pressure Analysis -- 4.4.2. Threshold Ionization Mass Spectrometry -- 4.4.3. Electron Attachment Mass Spectrometry -- 4.5. Process Ion Detection -- 4.5.1. RF Plasma Processing -- 4.5.2. RF Sputter Deposition -- 4.5.3. Microwave Plasma Processing -- 4.5.4. Negative Ion Detection -- 4.5.5. Pulsed Plasma Operation -- 4.5.6. Plasma Ion Mass Spectra -- References -- CHAPTER 5 ELECTRICAL AND OPTICAL PROPERTIES OF PLASMA POLYMERS Jacek Tyczkowski -- 5.1. Introduction -- 5.2. Electronic Structure -- 5.2.1. Theoretical Models -- 5.2.2. Experimental Methods -- 5.2.2.1. Optical Spectra -- 5.2.2.2. Internal Photoemission -- 5.2.2.3. Photoelectron Spectroscopies -- 5.2.2.4. Electrical Transport Methods -- 5.3. Amorphous Semiconductors -- 5.3.1. Band Model -- 5.3.2. Doping -- 5.3.3. Alloying -- 5.3.4. Charge Carrier Transport -- 5.4. Amorphous insulators -- 5.4.1. Band Model -- 5.4.2. Electrical Conductivity -- 5.4.2.1. Charge Carriers -- 5.4.2.2. Generation Mechanisms -- 5.4.2.3. Transport Mechanisms.

5.5. Amorphous Insulator - Amorphous Semiconductor Transition -- 5.6. Electronic Properties and Potential Applications -- 5.6.1. Electrical Properties -- 5.6.1.1. Low Conducting Films -- 5.6.1.2. High Conducting Films -- 5.6.1.3. Intermediately Conducting Films -- 5.6.2. Optical and Optoelectronic Properties -- 5.6.2.1. Coatings and Films for Optical Devices -- 5.6.2.2. Integrated Optics -- 5.6.2.3. Optoelectronic Devices -- 5.6.3. Current Problems -- References -- CHAPTER 6 PULSED PLASMA POLYMERIZATIONS Richard B. Timmons and Andrew J. Griggs -- 6.1. Introduction -- 6.1.1. Controlling Film Chemistry during Plasma Polymerizations -- 6.1.2. The Pulsed Plasma Approach -- 6.2. Experimental Considerations -- 6.2.1. Power Input Considerations -- 6.2.2. Film Formation Rates -- 6.2.3. Mean Roughness of Polymer Films Deposited under Pulsed Operation -- 6.2.4. Film Adhesion and Film Stability -- 6.3. Results -- 6.3.1. Some Examples of Film Chemistry Control under Pulsed Plasma Conditions -- 6.3.2. Film Formation Rates -- 6.3.3. Polymerization under Ultra Low Power Input Conditions -- 6.3.4 Film Composition Obtained under Equivalent Power Input Conditions during Pulsed and CW Plasma Polymerizations -- 6.4. Applications -- 6.4.1. Biomaterials -- 6.4.2. Thin Layer Adhesives -- 6.4.3. Synthesis of Super Hydrophobic Surfaces -- 6.4.4. Low Dielectric Constant Films -- 6.4.5 Electrically Conductive Polymers -- 6.5. Discussion -- Acknowledgements -- References -- CHAPTER 7 DEGRADATION AND STABILITY OF PLASMA POLYMERS Andreas Hollander and Jorg Thome -- 7.1. Introduction -- 7.2. Mechanisms of Polymer Degradation -- 7.2.1. General Considerations -- 7.2.2. Thermal Degradation -- 7.2.2.1. Hydrocarbon Polymer -- 7.2.2.2. Oxygen Containing Polymers -- 7.2.2.3. Aromatic Structures -- 7.2.2.4. Fluoropolymers -- 7.2.2.5. Silicone Polymers -- 7.2.3. Oxidation.

7.2.4. Photooxidation -- 7.3. The Degradation of Plasma Polymers -- 7.3.1. Structural Characteristics of Plasma Polymers -- 7.3.1.1. General Considerations -- 7.3.1.2. Plasma Polymer Coatings -- 7.3.2. Aging of PIasma PoIymers in Air -- 7.3.2.1. Hydrocarbon Plasma Polymers -- 7.3.2.2. Oxygen Containing Plasma Polymers -- 7.3.2.3. Nitrogen Containing Plasma Polymers -- 7.3.2.4. Fluoroaromatic Plasma Polymers -- 7.3.2.5. Siloxane and Silazane Plasma Polymers -- 7.3.2.6. Thermal Degradation of Plasma Polymers -- 7.3.2.7. Photooxidation of Plasma Polymers -- 7.3.3. General Features of Plasma Polymer Degradation -- 7.4. Preparation of Stable Plasma Polymers -- 7.4.1. Reduction of the Radical Concentration -- 7.4.1.1. Copolymerization -- 7.4.1.2. Thermal Annealing -- 7.4.1.3. Quenching of Trapped Radicals -- 7.4.2. Design Rules for Stable Plasma Polymers -- 7.5. Conclusions -- References -- CHAPTER 8 APPLICATION OF ATMOSPHERIC PRESSURE DISCHARGE FOR PLASMA POLYMER PROCESSES Masuhiro Kogoma -- 8.1. Introduction -- 8.2. Experimental -- 8.3. Results and Discussion -- 8.3.1. FTIR and Emission Spectra -- 8.3.2. Mass Spectrometry of C2H4 and C2F4 in He APG Discharge -- 8.3.3. TEOS deposition by APG Plasma -- References -- CHAPTER 9 HARD PLASMA POLYMERS, COMPOSITES AND PLASMA POLYMER FILMS PREPARED BY RF SPUTTERING OF CONVENTIONAL POLYMERS Hynek Biederman, Pavel Kudrna and Danka Slavinska -- 9.1. Introduction -- 9.2. Hard Plasma Polymer and Hard Carbon Films -- 9.3. Composite Metal/plasma Polymer Films -- 9.3.1. Deposition techniques -- 9.3.1.1 Simultaneous Plasma Polymerization and Sputter-etching using an rf Discharge -- 9.3.1.2. Simultaneous Plasma Polymerization of an Organic Gas and Evaporation of a Metal -- 9.3.1.3. Plasma Polymerization of Metal Organic Compounds -- 9.3.1.4. Co-sputtering from Composite Metal/Polymer Target.

9.3.1.5. Dc planar Magnetron Sputtering and Simultaneous Plasma Polymerization -- 9.3.2. Structure and Morphology of the Composite Films -- 9.3.3. Deposition Process and Composite Film Growth -- 9.3.4. Basic Physical Properties - Characterization -- 9.3.4.1. Structure, Morphology and Composition -- 9.3.4.2. Optical Properties -- 9.3.4.3. Electrical Properties -- 9.3.4.4. Mechanical Properties -- 9.3.4.5. Aging -- 9.3.5. Complex Composite Films -- 9.4. Plasma Polymer Films Prepared by rf Sputtering -- 9.4.1. Fluorocarbon Plasma Polymers -- 9.4.2. Hydrocarbon Plasma Polymers -- 9.5. Conclusions -- Acknowledgements -- References -- CHAPTER 10 BIOMEDICAL APPLICATIONS OF PLASMA-DEPOSITED THIN FILMS Kathryn J. Kitching, Vicki Pan and Buddy D. Ratner -- 10.1. Introduction -- 10.2. Biocompatibility: Relationship to Plasma Deposited Films -- 10.3. Applications for Cell and Tissue Culture -- 10.4. Applications for Controlled Release -- 10.5. Applications for Biosensors and Electrodes -- 10.6. Applications for Implanted and Blood-Contacting Biomaterials -- 10.7. Applications for Contact Lenses -- 10.8. Non-fouling Coatings -- 10.9. Plasma Surface Treatments For Biorecognition -- 10.10. Patterned Plasma-Deposited Films -- 10.11. Perspectives and Conclusions -- Acknowledgements -- References -- INDEX.
Abstract:
Plasma Polymer Films examines the current status of thedeposition and characterization of fluorocarbon-, hydrocarbon- andsilicon-containing plasma polymer films and nanocomposites, withplasma polymer matrix. It introduces plasma polymerization processdiagnostics such as optical emission spectroscopy (OES, AOES), anddescribes special deposition techniques such as atmospheric pressureglow discharge. Important issues for applications such as degradationand stability are treated in detail, and structural characterization,basic electrical and optical properties and biomedical applicationsare discussed.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: