Cover image for Hyperbranched Polymers : Synthesis, Properties, and Applications.
Hyperbranched Polymers : Synthesis, Properties, and Applications.
Title:
Hyperbranched Polymers : Synthesis, Properties, and Applications.
Author:
Yan, Deyue.
ISBN:
9780470928998
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (482 pages)
Series:
Wiley Series on Polymer Engineering and Technology ; v.8

Wiley Series on Polymer Engineering and Technology
Contents:
CONTENTS -- Preface -- Contributors -- 1. Promising Dendritic Materials: An Introduction to Hyperbranched Polymers -- 1.1 Importance of Branching -- 1.2 Polymer Architecture -- 1.3 Dendritic Polymers -- 1.4 Hyperbranched Polymers -- 1.4.1 Concept and History -- 1.4.2 Structure and Properties -- 1.4.3 Synthesis Philosophy -- 1.4.4 Applications -- 1.5 Conclusions -- 1.6 References -- 2. Polycondensation of AB x Monomers -- 2.1 Introduction -- 2.2 Statistical Consideration -- 2.2.1 Polymerization Behavior -- 2.2.2 Degree of Branching -- 2.3 Polymerization of AB x -Type Monomers -- 2.3.1 C-C Coupling Reactions -- 2.3.1.1 Metal-Catalyzed Cross Couplings -- 2.3.1.2 Diels-Alder Reactions -- 2.3.1.3 Nucleophilic Substitution by Activated Methylenes -- 2.3.1.4 Electrophilic Acylations -- 2.3.2 C-O Coupling Reactions -- 2.3.2.1 Nucleophilic Substitution Reactions by Phenoxides or Alkoxides -- 2.3.2.2 Esterification of Carboxylic Acid Derivatives -- 2.3.2.3 Ring-Opening Reaction of Epoxides -- 2.3.3 C-N Coupling Reactions -- 2.3.3.1 Condensation of Amines and Carboxylic Acid Derivatives -- 2.3.3.2 Nucleophilic Addition of Amines -- 2.3.3.3 Other C-N Coupling Reactions -- 2.3.4 Si-C or Si-O Coupling Reactions -- 2.3.4.1 Hydrosilylation Reactions -- 2.3.4.2 Condensation Reactions -- 2.3.4.3 Other Si-Containing Reactions -- 2.3.5 Other Coupling Reactions -- 2.3.5.1 C-O or C-N Coupling Reactions of Isocyanates -- 2.3.5.2 C-S Coupling Reactions -- 2.4 References -- 3. Synthesis of Hyperbranched Polymers via Polymerization of Functionally Symmetric Monomer Pairs -- 3.1 Introduction -- 3.2 Theoretical Treatment of A 2 + B 3 Polymerization -- 3.3 Polymerization of Symmetrical Monomer Pairs -- 3.3.1 Polycondensation of A 2 and B 3 Monomers -- 3.3.1.1 Polyamides -- 3.3.1.2 Polyimides -- 3.3.1.3 Polyethers -- 3.3.1.4 Polyesters -- 3.3.1.5 Polycarbonates.

3.3.1.6 Polyurethanes -- 3.3.2 Proton-Transfer Polymerization of A2 and B3 Monomers -- 3.3.3 The Michael Addition Polymerization of A2 and B3 Monomers -- 3.4 Conclusions -- 3.5 References -- 4. Synthesis of Hyperbranched Polymers via Polymerization of Asymmetric Monomer Pairs -- 4.1 Introduction -- 4.2 General Description of Polymerization of Asymmetric Monomer Pairs -- 4.3 Hyperbranched Polymers Prepared by Polymerization of Asymmetric Monomer Pairs -- 4.3.1 Poly(Sulfoneamine) -- 4.3.2 Poly(Ester Amine) -- 4.3.3 Poly(Amidoamine) -- 4.3.4 Multihydroxyl Hyperbranched Poly(Amine Ester)s -- 4.3.5 Poly(Ester Amide)s -- 4.3.6 Polyesters -- 4.3.7 Poly(Urea-Urethane)s -- 4.3.8 Other Polymers -- 4.3.9 Highly Branched Copolymers -- 4.4 Conclusions -- 4.5 References -- 5. Self-Condensing Vinyl Polymerization -- 5.1 Introduction -- 5.2 Self-Condensing Vinyl Polymerization -- 5.2.1 General Principles -- 5.2.2 Various Mechanisms of SCVP -- 5.2.3 Kinetics and MWD -- 5.2.4 Degree of Branching -- 5.2.5 Comparison with Experimental Data -- 5.3 Self-Condensing Vinyl Copolymerization (SCVCP) -- 5.3.1 Experimental Data -- 5.3.2 Kinetics and MWD -- 5.3.3 Degree of Branching -- 5.3.4 Comparison with Experimental Data -- 5.4 Self-Condensing Processes in Presence of Initiators -- 5.4.1 Kinetics and MWD -- 5.4.1.1 Batch Reactions -- 5.4.1.2 Semibatch Polymerization (Slow Inimer Addition) -- 5.4.2 Degree of Branching -- 5.4.2.1 Batch Polymerization -- 5.4.2.2 Semibatch Polymerization -- 5.4.3 Comparison with Experimental Data -- 5.5 SCVP of Macroinimers -- 5.6 Surface-Grafted Hyperbranched Polymers -- 5.7 References -- 6. Ring-Opening Multibranching Polymerization -- 6.1 Introduction -- 6.2 Classification of Ring-Opening Multibranching Polymerizations -- 6.2.1 Cationic Ring-Opening Multibranching Polymerizations -- 6.2.2 Anionic Ring-Opening Multibranching Polymerizations.

6.2.3 Catalytic Ring-Opening Multibranching Polymerizations -- 6.3 Core-Containing Hyperbranched Polymers By Ring-Opening Multibranching Polymerization -- 6.4 Conclusion and Perspectives -- 6.5 References -- 7. Hyperbranched Copolymers Synthesized by Cocondensation and Radical Copolymerization -- 7.1 Introduction -- 7.2 Cocondensation of AB n and a Comonomer -- 7.2.1 AB n + AB Approach -- 7.2.2 AB 2 + AB 2 Approach -- 7.2.3 Combined ROP/AB 2 Approach -- 7.3 Cocondensation of A 2 + B 2 + BB ′ 2 (or B′ B 2 ) -- 7.4 SCVCP Via Charge-Transfer Complex Inimer -- 7.5 Free Radical Copolymerization of Multifunctional Vinyl Monomers -- 7.6 Conclusion -- 7.7 References -- 8. Convergent Synthesis of Hyperbranched Polymers and Related Approaches -- 8.1 Introduction -- 8.2 Convergent Control in Hyperbranched Synthesis -- 8.3 Results -- 8.3.1 Hyperbranched Polymers by Convergent Living Anionic Polymerization -- 8.3.1.1 Hyperbranched Polymers from CDMSS and Polystyrene (PS) -- 8.3.1.2 Copolymerization of CDMSS and Styrene -- 8.3.1.3 Hyperbranched Polymer from VBC and PS -- 8.3.1.4 Characterization of Hyperbranched PS -- 8.3.1.5 Hyperbranched Polyisoprene -- 8.3.1.6 Convergent Hyperbranching with 4-Vinylstyrene Oxide -- 8.3.2 Complex Branching by Convergent Hyperbranched Polymerization -- 8.3.2.1 Hyperbranch-on-Hyperbranch Constructs- ((PS n )PS) m -- 8.3.2.2 Hyperbranched Macromonomers and Graft Copolymers -- 8.3.3 Related Procedures -- 8.3.3.1 Sequential Macromonomer Formation and Polymerization -- 8.3.3.2 Hyperbranched Polymers by a Convergent Radical Polymerization -- 8.4 Conclusions -- 8.5 References -- 9. Hyperbranched and Dendritic Polyolefins Prepared by Transition Metal Catalyzed Polymerization -- 9.1 Introduction -- 9.2 Results and Discussion -- 9.2.1 Branched Polyolefins Made by Radical Polymerization and Early Transition Metal-Catalyzed Polymerization.

9.2.2 Branched Polyolefins Prepared by Tandem Action of Multiple Transition Metal Catalysts -- 9.2.3 Hyperbranched and Dendritic Polyolefins Made by Late Transition Metal Catalysts -- 9.2.3.1 Hyperbranched Polyolefins Made by Catalytic Chain Transfer Catalyst -- 9.2.3.2 Hyperbranched Polyolefins Prepared by Chain-Walking Polymerization -- 9.2.3.2.1 Hyperbranched and Globular Dendrimer-Like Ethylene Homopolymers -- 9.2.3.2.2 Functional Hyperbranched and Dendritic Polyolefins -- 9.2.3.2.3 Core-Shell Dendritic Polyolefin Soft Nanoparticles -- 9.2.3.3 Hyperbranched Oligomers by Transition Metal Catalysts -- 9.3 Summary and Perspective -- 9.4 References -- 10. Hyperbranched π-Conjugated Polymers -- 10.1 Introduction -- 10.2 Scope -- 10.3 Hyperbranched Poly(Arylene)s -- 10.4 Hyperbranched Poly(Arylenevinylenes) -- 10.5 Hyperbranched Poly(Aryleneethynylenes) -- 10.6 Conclusion -- 10.7 References -- 11. Degree of Branching (DB) -- 11.1 Definition of the Degree of Branching (DB) -- 11.1.1 Single Highly Branched Molecules -- 11.1.2 A System of Hyperbranched Molecules -- 11.2 Determination of DB -- 11.2.1 Direct Determination -- 11.2.2 Indirect Methods -- 11.3 The Value Range of DB -- A11.4 Appendix -- A11.4.1 Numbers of Isomers in Hyperbranched Polymers -- A11.4.2 Number of Units of Different Substitution Degree in Random Polymerization of AB f Monomer -- 11.5 References -- 12. Influence of Branching Architecture on Polymer Properties -- 12.1 Introduction -- 12.2 Influence of Branching Architecture on Polymer Properties -- 12.2.1 Rheological Property -- 12.2.2 Crystallization and Melting Behaviors -- 12.2.3 Glass Transition -- 12.2.4 Thermal and Hydrolytic Degradations -- 12.2.5 Phase Characteristics -- 12.2.6 Optoelectronic Properties -- 12.2.7 Encapsulation Capability -- 12.2.8 Self-Assembly Behavior -- 12.2.9 Biomedical Applications -- 12.3 Conclusions.

12.4 References -- 13. Kinetic Theory of Hyperbranched Polymerization -- 13.1 Introduction -- 13.2 AB 2 -Type Polycondensation -- 13.2.1 Molecular Size Distribution Function -- 13.2.2 Average Degree of Polymerization and Polydispersity -- 13.2.3 Substitution Effect -- 13.2.4 Degree of Branching -- 13.2.5 Effect of Core Molecules -- 13.3 Copolycondensation of AB 2 - and AB-Type Monomers -- 13.3.1 Molecular Size Distribution Function -- 13.3.2 Degree of Branching -- 13.4 Self-Condensing Vinyl Polymerization -- 13.4.1 Distribution Function and Molecular Parameters -- 13.4.2 Degree of Branching -- 13.4.3 Effect of Core Initiators -- 13.5 References -- 14. Grafting and Surface Properties of Hyperbranched Polymers -- 14.1 Introduction -- 14.2 Surface Grafting -- 14.2.1 "Grafting from" Approach -- 14.2.1.1 Step-by-Step Methodology -- 14.2.1.2 Graft-on-Graft Technique -- 14.2.1.3 Radical Polymerization -- 14.2.1.4 Ring-Opening Polymerization -- 14.2.2 "Grafting to" Approach -- 14.3 Surface Properties of Hyperbranched Polymers -- 14.4 Conclusions -- 14.5 References -- 15. Biological and Medical Applications of Hyperbranched Polymers -- 15.1 Introduction -- 15.2 Gene Delivery -- 15.2.1 Linear and Hyperbranched Poly(ethyleneimine) as Nonviral Gene Vectors -- 15.2.2 Modification of Poly(ethyleneimine) and Use of Adjuvant Polyglycerol -- 15.2.3 Hyperbranched Alternatives for Poly(ethyleneimine) as Gene Vectors -- 15.3 Drug Delivery -- 15.3.1 Drug Encapsulation and Conjugation -- 15.3.2 Controlled Release of Pesticides -- 15.4 Biomaterials -- 15.4.1 Surface Modification -- 15.4.2 Modification of Bulk Materials -- 15.4.3 Modification of Dental Resins -- 15.5 Biointeraction -- 15.5.1 Hyperbranched Polymers as Supports for Ligand Presentation -- 15.5.2 Other Applications -- 15.6 Conclusions -- 15.7 References.

16. Applications of Hyperbranched Polymers in Coatings, as Additives, and in Nanotechnology.
Abstract:
A much-needed overview of the state of the art of hyperbranched polymers The last two decades have seen a surge of interest in hyperbranched polymers due to their ease of synthesis on a large scale and their promising applications in diverse fields, from medicine to nanotechnology. Written by leading scientists in academia and industry, this book provides for the first time a comprehensive overview of the topic, bringing together in one complete volume a wealth of information previously available only in articles scattered across the literature. Drawing on their work at the cutting edge of this dynamic area of research, the authors cover everything readers need to know about hyperbranched polymers when designing highly functional materials. Clear, thorough discussions include: How irregular branching affects polymer properties and their potential applications Important theoretical basics, plus a useful summary of characterization techniques How hyperbranched polymers compare with dendrimers as well as linear polymers Future trends in the synthesis and application of hyperbranched polymers Geared to novices and experts alike, Hyperbranched Polymers is a must-have resource for anyone working in polymer architectures, polymer engineering, and functional materials. It is also useful for scientists in related fields who need a primer on the synthesis, theory, and applications of hyperbranched polymers.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: