Cover image for Molecular Electronics : Commercial Insights, Chemistry, Devices, Architecture and Programming.
Molecular Electronics : Commercial Insights, Chemistry, Devices, Architecture and Programming.
Title:
Molecular Electronics : Commercial Insights, Chemistry, Devices, Architecture and Programming.
Author:
Tour, J M.
ISBN:
9789812385321
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (385 pages)
Contents:
Preface -- Contents -- Chapter 1 Commercialization of Molecular Electronics -- 1.1 Introduction -- 1.2 Commercial Challenges of Molecular Electronics -- 1.2.1. Investments in Molecular Electronics -- 1.2.2. Molecular Electronics Market Insertion Strategy -- 1.3 Molecular Electronics-Focused Companies -- 1.4 Advice from the Trenches for the Wannabe Corporate Founder -- 1.5 From a Front Row Observer to the Aspiring CEO of an Academically Founded Startup -- Chapter 2 Molecular Electronics -- 2.1 Introduction -- 2.2 The DNA and Quantum Computing Distinctions -- 2.3 Present Microelectronics Technology -- 2.4 Monetary and Fundamental Physical Limitations of Present Technology -- Chapter 3 Chemical Synthesis -- 3.1 Iterative Approaches to oligo(2,5-thiophene ethynylene)s Molecular Wires, Properties and Experimental Details -- 3.1.1. Introduction -- 3.1.2. Results and Discussion -- 3.1.2.1. Monomer Syntheses -- 3.1.2.2. Controlled Oligomer Syntheses -- 3.1.2.3. Oligomer Characterization -- 3.1.2.4. Attachment of Thiol End Groups -- 3.1.3. Summary -- 3.1.4. Experimental Procedures -- 3.2 Iterative Approaches to oligo( 1,4-phenylene ethynylene)s Molecular Wires, Properties and Experimental Details -- 3.2.1. Introduction -- 3.2.2. Results and Discussion -- 3.2.2.1. Monomer Syntheses for Solution-Based Oligomerizations -- 3.2.2.2. Oligomer Syntheses in Solution -- 3.2.2.3. Monomer Syntheses for the Polymer Supported Approach -- 3.2.2.4. Oligomer Syntheses on the Polymer Support -- 3.2.2.5. Spectroscopic Reaction Monitoring Techniques on the Resin -- 3.2.2.6. Assessing Solid Phase Reaction Yields -- 3.2.2.7. Characterization of the Oligomers -- 3.2.2.8. Attachment of Thiol End Groups -- 3.2.3. Summary -- 3.2.4. Experimental Procedures -- 3.3 Shorter Phenylene-Based Molecular Wires and Devices and Experimental Details.

3.3.1. Synthesis of Molecular Scale Wires -- 3.3.1.1. Synthesis of One-Terminal Oligo(phenylene ethynylene) Molecular Wires -- 3.3.1.2. Synthesis of Two-Terminal Oligo(phenylene ethynylene) Molecular Wires -- 3.3.1.3. Syntheses of Three-Terminal Molecular Scale Wires -- 3.3.1.4. Molecular Wires with Internal Methylene and Ethylene Transport Barriers -- 3.3.2. Synthesis of Molecular Scale Devices with Heteroatomic Functionalities -- 3.3.3. Porphyrin Containing Molecular Scale Wires -- 3.3.4. Synthesis of Dipole-Possessing Molecular Wire SAMs to Control Schottky Barriers in Organic Electronic Devices -- 3.3.5. Experimental -- 3.4 Highly Functional Molecular Wires and Devices with Diverse Alligator Clips and Experimental Details -- 3.4.1. Introduction -- 3.4.2. Switches and Memory Components -- 3.4.3. Alligator Clips -- 3.4.4. Conclusions -- 3.4.5. Experimental -- 3.5 Combinatorial Routes to Molecular Wires and Devices and Experimental Details -- 3.5.1. Introduction -- 3.5.2. Results and Discussion -- 3.5.2.1. Monomer Synthesis for the Combinatorial Approach -- 3.5.2.2. Oligomer Syntheses in Solution -- 3.5.2.3. Oligomer Syntheses on a Solid Support -- 3.5.3. Summary -- 3.5.4. Experimental Section -- Chapter 4 Molecular Self-Assembly, Device Construction, and Testing -- 4.1 Self-Assembly and Molecular Ordering -- 4.2 Probe Addressing of Molecules -- 4.3 Switching and Memory in Molecular Bundles -- 4.4 Large Area Molecular Electronic Devices: The Large Area Contact Problem -- 4.5 Summary -- Chapter 5 Architectures in Molecular electronics -- 5.1 Introduction -- 5.1.1. Quantum Cellular Automata (QCA) and Electrostatics Architectures -- 5.1.2. Cross-Bar Arrays -- 5.1.3. The NanoCell Architecture -- 5.2 Summary -- Chapter 6 Programming the Nanocell -- 6.1 NanoCell -- 6.1.1. Nanocell Design -- 6.1.2. Molecular Switches -- 6.1.3. Simulated Nanocell.

6.1.4. The Nanocell as a Logic Gate -- 6.2 Training a NanoCell -- 6.2.1. NanoCell as an Optimization Problem -- 6.2.1.1. Nanocell Training -- 6.2.1.2. Omnipotent Training -- 6.2.2. Genetic Algorithms -- 6.2.3. Training Process -- 6.2.3.1. Testing the Molecule -- 6.2.3.2. Genetic Algorithm Used in Training Nanocells -- 6.2.4. Fitness Function -- 6.3 Trained Nanocells -- 6.3.1. Voltage In - Current Out -- 6.3.1.1. Trained Logic Gates -- 6.3.1.2. Observations -- 6.3.2. Voltage In - Voltage Out -- 6.3.2.1. Trained Logic Gates -- 6.3.2.2. Observations -- 6.3.3 Hooking NanoCells Together -- 6.4 NanoCell Proofs -- 6.4.1. Biconnected Components in a NanoCell -- 6.4.2. Observing Sufficient Conditions -- 6.4.3. Isolated Nanoparticles -- 6.4.4. Necessary and Sufficient Conditions for Inverters and NANDs -- 6.4.4.1. Inverters -- 6.4.4.2. NANDs -- 6.4.5. Defect- and Fault-Tolerance -- 6.4.6. Training More Robust Nanocells -- 6.5 Future Work -- 6.6 Conclusions -- Bibliography -- Index.
Abstract:
This book presents an in-depth discussion on molecular electronics in an easy-to-understand manner, aiming at chemists, computer scientists, surface scientists, physicists, and applied mathematicians. Lighter overviews are provided for the science-minded layperson and the high tech entrepreneur in this nanoscale science. The author has included a detailed synthetic chemistry treasure chest, protocols of self-assembling routes for bottom-up fabrication atop silicon platforms, representative current-voltage and memory readouts from molecular devices, and overviews of present architectural and mathematical approaches to programming molecular computing machines.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: