Cover image for Handbook of Nanoscopy.
Handbook of Nanoscopy.
Title:
Handbook of Nanoscopy.
Author:
van Tendeloo, Gustaaf.
ISBN:
9783527641888
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (1449 pages)
Contents:
Handbook of Nanoscopy -- Contents to Volume -- Preface -- List of Contributors -- The Past, the Present, and the Future of Nanoscopy -- Part I Methods -- 1 Transmission Electron Microscopy -- 1.1 Introduction -- 1.2 The Instrument -- 1.2.1 General Layout -- 1.2.2 Lenses and Lens Aberrations -- 1.3 Imaging and Diffraction Modes -- 1.3.1 Important Diffraction Geometries -- 1.3.2 Important Imaging Modes -- 1.4 Dynamical Diffraction Theory -- 1.4.1 Perfect Crystal Theory -- 1.4.1.1 Fourier Space Approach -- 1.4.1.2 Real-Space Approach -- 1.4.1.3 Bloch Wave Approach -- 1.4.2 Example Dynamical Computations -- 1.4.2.1 Analytical Two-Beam Solutions -- 1.4.2.2 Numerical Multibeam Approaches -- 1.4.2.3 Other Dynamical Scattering Phenomena -- 1.4.3 Defect Images -- 1.4.3.1 Theory -- 1.4.3.2 Defect Image Simulations -- References -- 2 Atomic Resolution Electron Microscopy -- 2.1 Introduction -- 2.1.1 Atoms: the Alphabet of Matter -- 2.1.2 The Ideal Experiment -- 2.1.3 Why Imaging? -- 2.1.4 Why Electron Microscopy? -- 2.2 Principles of Linear Image Formation -- 2.2.1 Real Imaging -- 2.2.2 Coherent Imaging -- 2.3 Imaging in the Electron Microscope -- 2.3.1 Theory of Abbe -- 2.3.2 Incoherent Effects -- 2.3.3 Imaging at Optimum Defocus: Phase Contrast Microscopy -- 2.3.4 Resolution -- 2.4 Experimental HREM -- 2.4.1 Aligning the Microscope -- 2.4.2 The Specimen -- 2.4.3 Interpretation of the High-Resolution Images -- 2.5 Quantitative HREM -- 2.5.1 Model-Based Fitting -- 2.5.2 Phase Retrieval -- 2.5.3 Exit Wave Reconstruction -- 2.5.4 Structure Retrieval: Channeling Theory -- 2.5.5 Resolving versus Refining -- Appendix 2.A: Interaction of the Electron with a Thin Object -- Appendix 2.B: Multislice Method -- Appendix 2.C: Quantum Mechanical Approach -- References -- 3 Ultrahigh-Resolution Transmission Electron Microscopy at Negative Spherical Aberration.

3.1 Introduction -- 3.2 The Principles of Atomic-Resolution Imaging -- 3.2.1 Resolution and Point Spread -- 3.2.2 Contrast -- 3.2.3 Enhanced Contrast under Negative Spherical Aberration Conditions -- 3.2.4 NCSI Imaging for Higher Sample Thicknesses -- 3.3 Inversion of the Imaging Process -- 3.4 Case Study: SrTiO3 -- 3.5 Practical Examples of Application of NCSI Imaging -- References -- 4 Z-Contrast Imaging -- 4.1 Recent Progress -- 4.2 Introduction to the Instrument -- 4.3 Imaging in the STEM -- 4.3.1 Probe Formation -- 4.3.2 The Ronchigram -- 4.3.3 Reciprocity between TEM and STEM -- 4.3.4 Coherent and Incoherent Imaging -- 4.3.5 Dynamical Diffraction -- 4.3.6 Depth Sectioning -- 4.3.7 Image Simulation and Quantification -- 4.4 Future Outlook -- Acknowledgments -- References -- 5 Electron Holography -- General Idea -- 5.1 Image-Plane Off-Axis Holography Using the Electron Biprism -- 5.1.1 Recording a Hologram -- 5.1.2 Reconstruction of the Electron Wave -- 5.2 Properties of the Reconstructed Wave -- 5.2.1 Time Averaging -- 5.2.2 Inelastic Filtering -- 5.2.3 Basis for Recovering the Object Exit Wave -- 5.2.4 Amplitude Image -- 5.2.5 Phase Image -- 5.2.6 Field of View -- 5.2.7 Lateral Resolution -- 5.2.7.1 Fringe Spacing -- 5.2.7.2 Optimizing the Paths of Rays for Holography -- 5.2.8 Digitization of the Image Wave -- 5.2.9 Signal Resolution-Signal/Noise Properties -- 5.2.10 Amount of Information in the Reconstructed Wave -- 5.3 Holographic Investigations -- 5.3.1 Electric Fields -- 5.3.1.1 Structure Potentials -- 5.3.1.2 Intrinsic Electric Fields -- 5.3.2 Magnetic Fields -- 5.3.2.1 Distinction between Electric and Magnetic Phase Shift -- 5.3.3 Holography at Atomic Dimensions -- 5.3.3.1 Special Aspects for Acquisition of Atomic Resolution Holograms -- 5.3.3.2 Lateral Resolution: Fringe Spacing.

5.3.3.3 Width of Hologram, Number of Fringes, and Pixel Number of CCD Camera -- 5.3.3.4 Adaptation of the Hologram Geometry -- 5.3.3.5 Optimum Focus of Objective Lens -- 5.3.3.6 Demands on Signal Resolution -- 5.4 Special Techniques -- 5.4.1 Holographic Tomography -- 5.4.2 Dark-Field Holography -- 5.4.3 Inelastic Holography -- 5.5 Summary -- Acknowledgments -- References -- 6 Lorentz Microscopy and Electron Holography of Magnetic Materials -- 6.1 Introduction -- 6.2 Lorentz Microscopy -- 6.2.1 Historical Background -- 6.2.2 Imaging Modes -- 6.2.3 Applications -- 6.3 Off-Axis Electron Holography -- 6.3.1 Historical Background -- 6.3.2 Basis and Governing Equations -- 6.3.3 Experimental Requirements -- 6.3.4 Magnetic and Mean Inner Potential Contributions to the Phase -- 6.3.5 Applications -- 6.3.6 Quantitative Measurement of Magnetic Moments Using Electron Holography -- 6.4 Discussion and Conclusions -- Acknowledgments -- References -- 7 Electron Tomography -- 7.1 History and Background -- 7.1.1 Introduction to Nanoscale Systems -- 7.1.2 Tomography -- 7.2 Theory of Tomography -- 7.2.1 Real Space Reconstruction Using Backprojection -- 7.3 Electron Tomography, Missing Wedge, and Imaging Modes -- 7.4 STEM Tomography and Applications -- 7.5 Hollow-Cone DF Tomography -- 7.6 Diffraction Contrast Tomography -- 7.7 Electron Holographic Tomography -- 7.8 Inelastic Electron Tomography -- 7.9 Advanced Reconstruction Techniques -- 7.10 Quantification and Atomic Resolution Tomography -- Acknowledgments -- References -- 8 Statistical Parameter Estimation Theory - A Tool for Quantitative Electron Microscopy -- 8.1 Introduction -- 8.2 Methodology -- 8.2.1 Aim of Statistical Parameter Estimation Theory -- 8.2.2 Parametric Statistical Model of the Observations -- 8.2.3 Properties of Estimators -- 8.2.4 Attainable Precision -- 8.2.5 Maximum Likelihood Estimation.

8.2.5.1 The Need for a Good Starting Model -- 8.2.6 Model Assessment -- 8.2.7 Confidence Regions and Intervals -- 8.3 Electron Microscopy Applications -- 8.3.1 Resolution versus Precision -- 8.3.2 Atom Column Position Measurement -- 8.3.3 Model-Based Quantification of Electron Energy Loss Spectra -- 8.3.4 Quantitative Atomic Resolution Mapping using High-Angle Annular Dark Field Scanning Transmission Electron Microscopy -- 8.3.5 Statistical Experimental Design -- 8.4 Conclusions -- Acknowledgments -- References -- 9 Dynamic Transmission Electron Microscopy -- 9.1 Introduction -- 9.2 Time-Resolved Studies Using Electrons -- 9.2.1 Brightness, Emittance, and Coherence -- 9.2.2 Single-Shot Space-Time Resolution Trade-Offs -- 9.3 Building a DTEM -- 9.3.1 The Base Microscope and Experimental Method -- 9.3.2 Current Performance of Single-Shot DTEM -- 9.4 Applications of DTEM -- 9.4.1 Reactive Nanolaminate Films -- 9.4.2 Experimental Methods -- 9.4.3 Diffraction Results -- 9.4.4 Imaging Results -- 9.4.5 Discussion -- 9.5 Future Developments for DTEM -- 9.5.1 Arbitrary Waveform Generation Laser -- 9.5.2 Acquiring High Time Resolution Movies -- 9.5.3 Aberration Correction -- 9.5.4 In Situ Liquid Stages -- 9.5.5 Novel Electron Sources -- 9.5.6 Pulse Compression -- 9.6 Conclusions -- Acknowledgments -- References -- 10 Transmission Electron Microscopy as Nanolab -- 10.1 TEM and Measuring the Electrical Properties -- 10.1.1 TEM and Measuring Electrical Properties. Example 1: Electromigration -- 10.1.2 TEM and Measuring Electrical Properties. Example 2: Carbon Nanotubes -- 10.2 TEM with MEMS-Based Heaters -- 10.2.1 TEM with MEMS-Based Heaters. Example 1: Graphene at Various Temperatures -- 10.2.2 TEM with MEMS-Based Heaters. Example 2: Morphological Changes on Au Nanoparticles -- 10.3 TEM with Gas Nanoreactors.

10.3.1 TEM with Gas Nanoreactors. Example 1: Hydrogen Storage Materials -- 10.3.2 TEM with Gas Nanoreactors. Example 2: STEM Imaging of a Layer of Gold Nanoparticles at 1 bar -- 10.4 TEM with Liquid Nanoreactors -- 10.4.1 TEM with Liquid Nanoreactors. Example 1: Cu Electrodeposition -- 10.4.2 TEM with Liquid Nanoreactors. Example 2: Nucleation, Growth, and Motion of Small Particles -- 10.5 TEM and Measuring Optical Properties -- 10.6 Sample Preparation for Nanolab Experiments -- 10.6.1 Sculpting with the Electron Beam -- 10.6.2 Sculpting with the Ga Ion Beam -- 10.6.3 Sculpting with the Helium Ion Beam -- References -- 11 Atomic-Resolution Environmental Transmission Electron Microscopy -- 11.1 Introduction -- 11.2 Atomic-Resolution ETEM -- 11.3 Development of Atomic-Resolution ETEM -- 11.4 Experimental Procedures -- 11.5 Applications with Examples -- 11.6 Nanoparticles and Catalytic Materials -- 11.6.1 Dynamic Nanoparticle Shape Modifications, Electronic Structures of Promoted Systems, and Dynamic Oxidation States -- 11.7 Oxides -- 11.8 In situ Atomic Scale Twinning Transformations in Metal Carbides -- 11.9 Dynamic Electron Energy Loss Spectroscopy -- 11.10 Technological Benefits of Atomic-Resolution ETEM -- 11.11 Other Advances -- 11.12 Reactions in the Liquid Phase -- 11.13 In situ Studies with Aberration Correction -- 11.14 Examples and Discussion -- 11.15 Applications to Biofuels -- 11.16 Conclusions -- Acknowledgments -- References -- 12 Speckles in Images and Diffraction Patterns -- 12.1 Introduction -- 12.2 What Is Speckle? -- 12.3 What Causes Speckle? -- 12.4 Diffuse Scattering -- 12.5 From Bragg Reflections to Speckle -- 12.6 Coherence -- 12.6.1 Temporal Coherence -- 12.6.2 Coherence Length -- 12.6.3 Spatial Coherence -- 12.6.4 Coherence Volume -- 12.7 Fluctuation Electron Microscopy -- 12.7.1 Measuring Speckle -- 12.8 Variance versus Mean.

12.9 Speckle Statistics.
Abstract:
This completely revised successor to the Handbook of Microscopy supplies in-depth coverage of all imaging technologies from the optical to the electron and scanning techniques. Adopting a twofold approach, the book firstly presents the various technologies as such, before going on to cover the materials class by class, analyzing how the different imaging methods can be successfully applied. It covers the latest developments in techniques, such as in-situ TEM, 3D imaging in TEM and SEM, as well as a broad range of material types, including metals, alloys, ceramics, polymers, semiconductors, minerals, quasicrystals, amorphous solids, among others. The volumes are divided between methods and applications, making this both a reliable reference and handbook for chemists, physicists, biologists, materials scientists and engineers, as well as graduate students and their lecturers.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: