Cover image for Micro- and Nanomanipulation Tools.
Micro- and Nanomanipulation Tools.
Title:
Micro- and Nanomanipulation Tools.
Author:
Hierold, Christofer.
ISBN:
9783527690251
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (609 pages)
Series:
Advanced Micro and Nanosystems Ser.
Contents:
Cover -- Title Page -- Copyright -- Contents -- About the Editors -- Series Editors Preface -- Preface -- List of Contributors -- Chapter 1 High-Speed Microfluidic Manipulation of Cells -- 1.1 Introduction -- 1.2 Direct Cell Manipulation -- 1.2.1 Electrical Cell Manipulation -- 1.2.2 Magnetic Cell Manipulation -- 1.2.3 Optical Cell Manipulation -- 1.2.4 Mechanical Cell Manipulation -- 1.2.4.1 Constriction-Based Cell Manipulation -- 1.2.4.2 Shear-Induced Cell Manipulation -- 1.3 Indirect Cell Manipulation -- 1.3.1 Cell Separation -- 1.3.1.1 Hydrodynamic (Passive) Cell Separation -- 1.3.1.2 Nonhydrodynamic (Active) Particle Separation -- 1.3.2 Cell Alignment (Focusing) -- 1.3.2.1 Cell Alignment (Focusing) for Flow Cytometry -- 1.3.2.2 Cell Solution Exchange -- 1.4 Summary -- Acknowledgments -- References -- Chapter 2 Micro and Nano Manipulation and Assembly by Optically Induced Electrokinetics -- 2.1 Introduction -- 2.2 Optically Induced Electrokinetic (OEK) Forces -- 2.2.1 Classical Electrokinetic Forces -- 2.2.1.1 Dielectrophoresis (DEP) -- 2.2.1.2 AC Electroosmosis (ACEO) -- 2.2.1.3 Electrothermal Effects (ET) -- 2.2.1.4 Buoyancy Effects -- 2.2.1.5 Brownian Motion -- 2.2.2 Optically Induced Electrokinetic Forces -- 2.2.2.1 OEK Chip: Operational Principle and Design -- 2.2.2.2 Spectrum-Dependent ODEP Force -- 2.2.2.3 Waveform-Dependent ODEP Force -- 2.3 OEK-Based Manipulation and Assembly -- 2.3.1 Manipulation and Assembly of Nonbiological Materials -- 2.3.2 Biological Entities: Cells and Molecules -- 2.3.3 Manipulation of Fluidic Thin Films -- 2.4 Summary -- References -- Chapter 3 Manipulation of DNA by Complex Confinement Using Nanofluidic Slits -- 3.1 Introduction -- 3.2 Slitlike Confinement of DNA -- 3.3 Differential Slitlike Confinement of DNA -- 3.4 Experimental Studies -- 3.5 Design of Complex Slitlike Devices.

3.6 Fabrication of Complex Slitlike Devices -- 3.7 Experimental Conditions -- 3.8 Conclusion -- Disclaimer -- References -- Chapter 4 Microfluidic Approaches for Manipulation and Assembly of One-Dimensional Nanomaterials -- 4.1 Introduction -- 4.2 Microfluidic Assembly -- 4.2.1 Hydrodynamic Focusing -- 4.2.1.1 Concept and Mechanism -- 4.2.1.2 2D and 3D Hierarchy -- 4.2.1.3 Symmetrical and Asymmetrical Behavior -- 4.2.2 HF-Based NW Assembly -- 4.2.2.1 The Principle -- 4.2.2.2 Device Design and Fabrication -- 4.2.2.3 NW Assembly by Symmetrical Hydrodynamic Focusing -- 4.2.2.4 NW Assembly by Asymmetrical Hydrodynamic Focusing -- 4.3 Summary -- References -- Chapter 5 Optically Assisted and Dielectrophoretical Manipulation of Cells and Molecules on Microfluidic Platforms -- 5.1 Introduction -- 5.2 Operating Principle and Fundamental Physics of the ODEP Platform -- 5.2.1 ODEP Force -- 5.2.2 Optically Induced ACEO Flow -- 5.2.3 Electrothermal (ET) Force -- 5.2.4 Experimental Setup of an ODEP Platform -- 5.2.4.1 Light Source -- 5.2.4.2 Materials of the Photoconductive Layer -- 5.3 Applications of the ODEP Platform -- 5.3.1 Cell Manipulation -- 5.3.2 Cell Separation -- 5.3.3 Cell Rotation -- 5.3.4 Cell Electroporation -- 5.3.5 Cell Lysis -- 5.3.6 Manipulation of Micro- or Nanoscale Objects -- 5.3.7 Manipulation of Molecules -- 5.3.8 Droplet Manipulation -- 5.4 Conclusion -- References -- Chapter 6 On-Chip Microrobot Driven by Permanent Magnets for Biomedical Applications -- 6.1 On-Chip Microrobot -- 6.2 Characteristics of Microrobot Actuated by Permanent Magnet -- 6.3 Friction Reduction for On-Chip Robot -- 6.3.1 Friction Reduction by Drive Unit -- 6.3.2 Friction Reduction by Ultrasonic Vibrations -- 6.3.3 Experimental Evaluations of MMT -- 6.3.3.1 Positioning Accuracy Evaluation -- 6.3.3.2 Output Force Evaluation.

6.4 Fluid Friction Reduction for On-Chip Robot -- 6.4.1 Fluid Friction Reduction by Riblet Surface -- 6.4.2 Principle of Fluid Friction Reduction Using Riblet Surface -- 6.4.3 Optimal Design of Riblet to Minimize the Fluid Friction -- 6.4.4 Fluid Force Analysis on MMT with Riblet Surface -- 6.4.5 Fabrication Process of MMT with Riblet Surface Using Si\bondNi Composite Structure -- 6.4.6 Evaluation of Si\bondNi Composite MMT with Optimal Riblet -- 6.5 Applications of On-Chip Robot to Cell Manipulations -- 6.5.1 Oocyte Enucleation -- 6.5.2 Multichannel Sorting -- 6.5.3 Evaluation of Effect of Mechanical Stimulation on Microorganisms -- 6.6 Summary -- References -- Chapter 7 Silicon Nanotweezers for Molecules and Cells Manipulation and Characterization -- 7.1 Introduction -- 7.2 SNT Operation and Design -- 7.2.1 Design -- 7.2.1.1 Electrostatic Actuation -- 7.2.1.2 Mechanical Structure -- 7.2.1.3 Capacitive Sensor -- 7.2.2 Operation -- 7.2.2.1 Instrumentation -- 7.2.2.2 Characterization -- 7.2.2.3 Modeling -- 7.3 SNT Process -- 7.3.1 MEMS Fabrication versus the Design Constrains and User Applications -- 7.3.2 Sharp Tip Single Actuator SNT Process Flow -- 7.3.2.1 Nitride Deposition -- 7.3.2.2 Defining Crystallographic Alignment Structures -- 7.3.2.3 Photolithography (Level 1)\,\endash\,Nitride Patterning\hb for LOCOS -- 7.3.2.4 Photolithography (Level 2)\,\endash\,Sensors and Actuators -- 7.3.2.5 DRIE Front Side -- 7.3.2.6 Sharp Tip Fabrication and Gap Control -- 7.3.2.7 Photolithography (Level 3) and Rearside DRIE -- 7.3.2.8 Releasing in Vapor HF -- 7.3.3 Concluding Remarks on the Silicon Nanotweezers Microfabrication -- 7.4 DNA Trapping and Enzymatic Reaction Monitoring -- 7.5 Cell Trapping and Characterization -- 7.5.1 Introducing Remarks -- 7.5.2 Specific Issues -- 7.5.3 Design of SNT -- 7.5.4 Instrumentation -- 7.5.5 Experimental Platform.

7.5.6 Cells in Suspension -- 7.5.7 Spread Cells -- 7.5.8 Cell Differentiation -- 7.5.9 Concluding Remarks for Cell Characterization with SNT -- 7.6 General Concluding Remarks and Perspectives -- Acknowledgments -- References -- Chapter 8 Miniaturized Untethered Tools for Surgery -- 8.1 Introduction -- 8.2 Macroscale Untethered Surgical Tools -- 8.2.1 Localization and Locomotion without Tethers -- 8.2.1.1 Localization -- 8.2.1.2 Locomotion -- 8.2.2 Powering and Activating a Small Machine -- 8.2.2.1 Stored Chemical Energy -- 8.2.2.2 Stored Mechanical Energy -- 8.2.2.3 External Magnetic Field -- 8.2.2.4 Other Sources of Energy -- 8.3 Microscale Untethered Surgical Tools -- 8.3.1 Applications -- 8.3.1.1 Angioplasty -- 8.3.1.2 Surgical Wound Closure -- 8.3.1.3 Biopsy -- 8.3.1.4 Micromanipulation -- 8.3.2 Locomotion -- 8.3.2.1 Magnetic Force -- 8.3.2.2 Electromechanical -- 8.3.2.3 Optical Tweezers -- 8.3.2.4 Biologic Tissue Powered -- 8.4 Nanoscale Untethered Surgical Tools -- 8.4.1 Fuel-Driven Motion -- 8.4.2 Magnetic Field-Driven Motion -- 8.4.3 Acoustic Wave-Driven Motion -- 8.4.4 Light-Driven Motion -- 8.4.5 Nano-Bio Hybrid Systems -- 8.4.6 Artificial Molecular Machines -- 8.5 Conclusion -- Acknowledgments -- References -- Chapter 9 Single-Chip Scanning Probe Microscopes -- 9.1 Scanning Probe Microscopy -- 9.2 The Role of MEMS in SPM -- 9.3 CMOS\endash MEMS Manufacturing Processes Applied to sc-SPMs -- 9.4 Modeling and Design of sc-SPMs -- 9.4.1 Electrothermal Model of Self-Heated Resistor -- 9.4.2 Electrothermal Model of Vertical Actuator -- 9.4.3 Electro-Thermo-Mechanical Model -- 9.5 Imaging Results -- 9.6 Conclusion -- References -- Chapter 10 Untethered Magnetic Micromanipulation -- 10.1 Physics of Micromanipulation -- 10.2 Sliding Friction and Surface Adhesion -- 10.2.1 Adhesion -- 10.2.1.1 van der Waals Forces -- 10.2.2 Sliding Friction.

10.3 Fluid Dynamics Effects -- 10.3.1 Viscous Drag on a Sphere -- 10.4 Magnetic Microrobot Actuation -- 10.5 Locomotion Techniques -- 10.5.1 Motion in Two Dimensions -- 10.5.2 Motion in Three Dimensions -- 10.5.3 Magnetic Actuation Systems -- 10.5.4 Special Coil Arrangements -- 10.6 Manipulation Techniques -- 10.6.1 Contact Micromanipulation -- 10.6.1.1 Direct Pushing -- 10.6.1.2 Grasping Manipulation -- 10.6.2 Noncontact Manipulation -- 10.6.2.1 Translation -- 10.6.2.2 Rotation -- 10.6.2.3 Parallel Manipulation -- 10.6.3 Mobile Microrobotics Competition -- 10.7 Conclusions and Prospects -- References -- Chapter 11 Microrobotic Tools for Plant Biology -- 11.1 Why Do We Need a Mechanical Understanding of the Plant Growth Mechanism? -- 11.2 Microrobotic Platforms for Plant Mechanics -- 11.2.1 The Cellular Force Microscope -- 11.2.1.1 Force Sensing Technology -- 11.2.1.2 Positioning System -- 11.2.1.3 Imaging System and Interface -- 11.2.2 Real-Time CFM -- 11.2.2.1 Positioning System -- 11.2.2.2 Data Acquisition -- 11.2.2.3 Automated Cell Selection and Positioning -- 11.3 Biomechanical and Morphological Characterization of Living Cells -- 11.3.1 Cell Wall Apparent Stiffness -- 11.3.2 3D Stiffness and Topography Maps -- 11.3.3 Real-Time Intracellular Imaging During Mechanical Stimulation -- 11.4 Conclusions -- References -- Chapter 12 Magnetotactic Bacteria for the Manipulation and Transport of Micro- and Nanometer-Sized Objects -- 12.1 Introduction -- 12.2 Magnetotactic Bacteria -- 12.3 Component Sizes and Related Manipulation Approaches -- 12.3.1 Transport and Manipulation of MS Components -- 12.3.2 Transport and Manipulation of AE Components -- 12.3.3 Transport and Manipulation of ML Components -- 12.4 Conclusions and Discussion -- References.

Chapter 13 Stiffness and Kinematic Analysis of a Novel Compliant Parallel Micromanipulator for Biomedical Manipulation.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: