Cover image for Recent Advances In Artificial Life.
Recent Advances In Artificial Life.
Title:
Recent Advances In Artificial Life.
Author:
Abbass, H. A.
ISBN:
9789812701497
Personal Author:
Physical Description:
1 online resource (409 pages)
Contents:
Contents -- Preface -- 1 . Recreating Large-Scale Evolutionary Phenomena P.-M. Agapow -- 1.1 Introduction -- 1.2 A framework for recreating evolution -- 1.2.1 Simulation -- 1.2.2 Data analysis and manipulation -- 1.2.3 Practical issues -- 1.3 Life out of balance -- 1.3.1 Key innovations -- 1.3.2 Methods -- 1.4 Discussion -- Acknowledgement -- 2 . Neural Evolution for Collision Detection & Resolution in a 2D Free Flight Environment S . Alam. M . McPartland. M . Barlow. P . Lindsay. and H . A . Abbass -- 2.1 Background -- 2.2 Modelling the Problem -- 2.2.1 Collision Detection -- 2.3 The Neural Network Structure -- 2.4 Preliminary Experimental Setup -- 2.4.1 Preliminary Results -- 2.5 Main Experiment Setup -- 2.6 Fitness Function -- 2.7 Main Results and Analysis -- 2.8 Conclusion & Future Work -- Acknowledgements -- 3 . Cooperative Coevolution of Genotype-Phenotype Mappings to Solve Epistatic Optimization Problems L . T . Bui. H . A . Abbass, and D . Essam -- 3.1 Introduction -- 3.2 The use of co-evolution for GPM -- 3.3 The proposed algorithm -- 3.4 A comparative study -- 3.4.1 Testing scenario -- 3.4.2 Results -- 3.4.3 Fitness landscape analysis -- 3.5 Conclusion -- Acknowledgement -- 4 . Approaching Perfect Mixing in a Simple Model of the Spread of an Infectious Disease D . Chu and J . Rowe -- 4.1 Introduction -- 4.2 Description of the Model -- 4.3 Behavior of the Model in the Perfect Mixing Case -- 4.4 Beyond perfect Mixing -- 4.4.1 No Movement: The Static Case -- 4.4.2 In Between -- 4.5 Discussion -- 4.6 Conclusion & Future Work -- 5 . The Formation of Hierarchical Structures in a Pseudo- Spatial Co-Evolutionary Artificial Life Environment D . Cornforth. D . G . Green and J . Awburn -- 5.1 Introduction -- 5.2 Themodel -- 5.2.1 Genotype to phenotype mapping -- 5.2.2 Selection mechanism -- 5.2.3 Reproduction and genetic operators.

5.2.4 Memetic evolution -- 5.2.5 Global parameters -- 5.3 Experiments -- 5.4 Results -- 5.5 Discussion -- Acknowledgements -- 6 . Perturbation Analysis: A Complex Systems Pattern N . Geard. K . Willadsen and J . Wiles -- 6.1 Motivation -- 6.2 Applicability -- 6.3 Structure -- 6.4 Participants -- 6.5 Collaborations -- 6.6 Consequences -- 6.7 Implementation -- 6.8 Sample code -- Boolean network attractor stability -- Lyapunov characteristic exponents -- 6.9 Known uses -- 6.10 Summary -- 6.11 Acknowledgements -- 7 . A Simple Genetic Algorithm for Studies of Mendelian Populations C . Gondro and J.C.M. Magalhaes -- 7.1 Introduction -- 7.2 Genetic Algorithms -- 7.2.1 Search operators -- 7.3 Conceptual Model of Mendelian Populations -- 7.3.1 Virtual organisms as a simple genetic algorithm -- 7.4 Hardy-Weinberg Equilibrium in a Virtual Population -- 7.5 Conclusions and Future Work -- Acknowledgement -- 8 . Roles of Rule-Priority Evolution in Animat Models K.A. Hawick, H.A. James and C.J. Scogings -- 8.1 Introduction -- 8.2 Rule-Based Model -- 8.2.1 Our Predator-Prey Model -- 8.3 Resultant Behaviours from Prioritisation -- 8.4 Behavioural Metrics and Analysis -- 8.5 An Evolutionary Survival Experiment -- 8.5.1 Evolution Procedure -- 8.5.2 Survivability -- 8.6 Generalising the Approach -- 8.7 Conclusions -- Acknowledgements -- 9 . Gauging ALife: Emerging Complex Systems K . Kitto -- 9.1 Life and ALife -- 9.1.1 Development -- 9.1.2 ALife and Emergence -- Object Complexity: -- Simulation Framework: -- 9.1.3 Complexity and Contextuality -- 9.2 Incorporating Context into our Models -- 9.2.1 The Baas Definition of Emergence -- 9.2.2 Quantum Mechanics -- 9.2.3 Gauge Theories -- 9.3 The Recursive Gauge Principle (RGP) -- 9.3.1 Cellular Automata and Solitons -- 9.3.2 BCS Superconductivity and Nambu-Goldstone modes -- 9.3.3 Returning to Development.

10 . Localisation of Critical Transition Phenomena in Cellular Automata Rule-Space A . Lafusa and T . Bossomaier -- 10.1 Introduction -- 10.2 Automatic classify rules with input-entropy -- 10.3 Parameterisation of cellular automata rule-space -- 10.4 Experimental determination of the edge-of-chaos -- 10.5 Definition of a unique critical parameter -- 10.6 Conclusions -- 11 . Issues in the Scalability of Gate-Level Morphogenetic Evolvable Hardware J . Lee and J . Sitte -- 11.1 Introduction -- 11.2 Scaling with Morphogenesis -- 11.3 Evolving One Bit Full Adders -- 11.3.1 Experimental Setup -- 11.3.2 LUT Encoding -- 11.3.3 Fitness Evaluation -- 11.3.4 Experiment Results -- 11.3.5 Further Experiments -- 11.4 Analysing Problem Difficulty -- 11.4.1 Experiment Difficulty Comparisons -- 11.5 Conclusion -- 12 . Phenotype Diversity Objectives for Graph Grammar Evolution M . H . Luerssen -- 12.1 Introduction -- 12.2 Background -- 12.2.1 Evolution and Development -- 12.2.2 Graph Ontogenesis -- 12.2.3 Evolving a Graph Grammar -- 12.2.4 Diversity Objectives -- 12.3 Experiments -- 12.3.1 Measures of Phenotype Diversity -- 12.3.2 Evaluation -- 12.3.3 Results and Discussion -- 12.4 Conclusions -- 13. An ALife Investigation on the Origins of Dimorphic Parental Investments S . Mascaro. K . B . Korb and A . E . Nicholson -- 13.1 Introduction -- 13.2 ALife Simulation -- Environment. -- Agents. -- Parental investment. -- Statistics. -- 13.3 Prior investment hypothesis -- Method. -- Results. -- 13.4 Desertion hypothesis -- Method. -- Results. -- 13.5 Paternal uncertainty hypothesis -- Method. -- Results. -- 13.6 Association hypothesis -- Method. -- Results. -- 13.7 Chance dimorphism hypothesis -- Method. -- Results. -- 13.8 Conclusion -- 14. Local Structure and Stability of Model and Real World Ecosystems D . Newth. and D . Cornforth -- 14.1 Introduction.

14.2 Ecological stability and patterns of interaction -- 14.2.1 Community Stability -- 14.2.2 Local patterns of interaction -- 14.3 Experiments -- 14.3.1 Stability properties of motifs -- 14.3.2 Motif frequency -- 14.3.3 Community food web data -- 14.4 Results -- 14.4.1 Stability properties of motifs -- 14.4.2 Stability and occurrence of three node motifs -- 14.4.3 Stability and occurrence of four node motifs -- 14.5 Discussion -- 14.6 Closing comments -- Acknowledgements -- 15 . Quantification of Emergent Behaviors Induced by Feedback Resonance of Chaos A . Patti. M . Lungarella. and Y . Kuniyoshi -- 15.1 Introduction -- 15.2 Model System -- 15.2.1 Dynamical Systems Approach -- 15.2.2 Feedback Resonance -- 15.2.3 Coupled Chaotic Field -- 15.3 Methods -- 15.4 Experiments -- 15.5 Analysis -- 15.5.1 Analysis 1: Body movements -- 15.5.2 Analysis 2: Neural coupling -- 15.6 Discussion and Conclusion -- 15.7 Acknowledgements -- 16 . A Dynamic Optimisation Approach for Ant Colony Optimisation Using the Multidimensional Knapsack Problem M . Randall -- 16.1 Introduction -- 16.2 Adapting ACO to Dynamic Problems -- 16.2.1 Overview -- 16.2.2 The Solution Deconstruction Process -- 16.2.2.1 Event Descriptors -- 16.3 Computational Experience -- 16.4 Conclusions -- 17 . Maintaining Explicit Diversity Within Individual Ant Colonies M . Randall -- 17.1 Introduction -- 17.2 Ant Colony System -- 17.3 Explicit Diversification Strategies for ACO -- 17.4 Maintaining Intra-Colony Diversity -- 17.5 Computational Experience -- 17.5.1 Experimental Design -- Stage 1: -- Stage 2: -- 17.5.2 Implementation Details -- 17.5.3 Problem Instances -- 17.5.4 Results -- 17.6 Conclusions -- 18 . Evolving Gene Regulatory Networks for Cellular Morphogenesis T . Rudge and N . Geard -- 18.1 Introduction -- 18.2 Background -- 18.2.1 Leaf Morphogenesis -- 18.2.2 Previous Models.

18.3 The Simulation Framework -- 18.3.1 The Genetic Component -- 18.3.2 The Cellular Component -- Cell: -- Spatio-Mechanical Model: -- 18.3.3 Genotype-Phenotype Coupling -- 18.3.4 The Evolutionary Component -- 18.4 Initial Experiments -- 18.4.1 Method -- DRGN Coupling: -- Fitness function: -- Summary: -- 18.4.2 Results -- 18.5 Discussion and Future Directions -- Acknowledgments -- 19 . Complexity of Networks R . K . Standish -- 19.1 Introduction -- 19.2 Representation Language -- 19.3 Computing w -- 19.4 Compressed complexity and Offdiagonal complexity -- 19.5 Conclusion -- Acknowledgements -- 20 . A Generalised Technique for Building 2D Structures with Robot Swarms R.L. Stewart and R.A. Russell -- 20.1 Introduction -- 20.2 Background Information -- 20.3 A New Technique for Creating Spatio-temporal Varying Templates -- 20.3.1 Calibration -- 20.3.2 Experimental Procedure -- 20.3.3 Building a Radial Wall With and Without a Gap -- 20.4 Solving the Generalised 2D Collective Construction Problem -- 20.4.1 Experimental Procedure -- 20.4.2 Building Structures of Greater Complexity -- 20.5 General Discussion -- 20.6 Conclusion -- Acknowledgement -- 21 . H-ABC: A Scalable Dynamic Routing Algorithm B . Tatomir and L . J.M. Rothkrantz -- 21.1 Introduction -- 21.2 The Hierarchical Ant Based Control algorithm -- 21.2.1 Network model -- 21.2.2 Local ants -- 21.2.3 Backward ants -- 21.2.4 Exploring ants -- 21.2.5 Data packets -- 21.2.6 Flag packets -- 21.3 Simulation environment -- 21.4 Test and results -- 21.4.1 Low traffic load -- 21.4.2 High traffic load -- 21.4.3 Hot spot -- 21.4.4 Overhead -- 21.5 Conclusions and future work -- 22 . Describing DNA Automata Using an Artificial Chemistry Based on Pattern Matching and Recombination T . Watanabe. K . Kobayashi. M . Nakamura. K . Kishi. M . Kazuno and K . Tominaga -- 22.1 Introduction.

22.2 An Artificial Chemistry for Stacks of Character Strings.
Abstract:
Artificial life is now a recognized discipline of research with many important applications and software tools. However, many theoretical issues remain unresolved. This book brings together a cross-section of key developments in artificial life, which in turn gives us new insight into the theory of complex systems. The central ideas of the book surround genetics and evolution in an artificial life framework. Topics covered include maintenance of genetic diversity, hierarchical structures and stability of ecosystems. Underpinning these topics are key theoretical developments surrounding network complexity, the development of pattern languages for complex networks and a deeper understanding of the edge of chaos where complex systems live. Practical applications include optimization, gene regulatory networks, modeling the spread of disease and the evolution of ageing. The reader will gain an insight into the mathematical techniques at the core of artificial life and encounter a sufficient diversity of applications to stimulate new directions in their own field.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: