Cover image for Quantum Bio-Informatics II : From Quantum Information to Bio-Informatics.
Quantum Bio-Informatics II : From Quantum Information to Bio-Informatics.
Title:
Quantum Bio-Informatics II : From Quantum Information to Bio-Informatics.
Author:
Freudenberg, Wolfgang.
ISBN:
9789814273756
Personal Author:
Physical Description:
1 online resource (357 pages)
Series:
QP-PQ: Quantum Probability & White Noise Analysis, 24
Contents:
Preface -- The Problem of Quantum-Like Representation in Economy Cognitive Science, and Genetics L. Accardi, A. Khrennikov and M. Ohya -- References -- Chaotic Behavior Observed in Linea Dynamics M. Asano, T. Yamamoto and Y. Togawa -- 1. Introduction -- 2. Dynamics on Simplex and Example -- 2.1. General Form of Dynamics on Simplex -- 2.2. Scarf-Hirota Model -- 3. Log-linear Dynamics and Chaotic Behaviors on Simplex -- 3.1. Log-linear Dynamics on Simplex -- 3.2. Discrete Log-linear Dynamics -- 3.3. Chaotic Behavior -- 4. Conclusion -- References -- Complete m-Level Quantum Teleportation Based on Kossakowski-Ohya Scheme M. Asano, M. Ohya and Y. Tanaka -- 1. Introduction -- 2. Quantum Teleportation and Kossakowski-Ohya Scheme -- 3. Teleportation Map of Complete m-Ievel Teleportation -- 4. Model of Complete Two-level Quantum Teleportation -- 4.1. Case of n = 4 -- 4.2. Expansion to Model of n = 28 -- 5. Conclusion -- References -- Towards Quantum Cybernetics: Optimal Feedback Control in Quantum Bio Informatics V. P. Belavkin -- 1. Introduction -- 2. Some facts and notations -- 2.1. Quantum state geometry -- 2.2. Derivations and Hessians -- 2.3. Affine and concave costs -- 2.4. Legendre-Fenchel transform -- 3. Quantum conditionally Markov dynamics -- 3.1. Quantum controlled generator -- 3.2. Deterministic quantum Master equations -- 3.3. Output processes and continuous observation -- 3.4. Stochastic quantum Master equations -- 4. Quantum dynamical programming -- 4.1. Quantum Hamilton-Jacobi equation -- 4.2. Pontryagin's maximum principle -- 4.3. The filtered quantum Bellman equation -- 4.4. Linear-convex state costs -- 5. Optimal feedback control of purification -- 5.1. Bequest function for purification -- 5.2. Optimal feedback qubit control -- 5.3. The qubit HJB equation -- 6. Discussion -- References.

Quantum Entanglement and Circulant States D. Chruscinski -- 1. Introduction -- 2. PPT states - simple example -- 3. Circulant states -- 3.1. Two qubits -- 3.2. Two qutrits -- 4. General case - two qudits -- 5. Circulant liftings -- 6. Conclusions -- Acknowledgments -- References -- The Compound Fock Space and Its Application in Brain Models K.-H. Fichtner and W. Freudenberg -- 1. Introduction -- 2. The Space of Signals -- 2.1. The Boson Fock Space -- 2.2. Exponential Vectors - Coherent States -- 2.3. The Space of Elementary Signals -- 3. The Memory -- 3.1. The Compound Fock space -- 3.2. States of the Memory -- 3.3. Some Basic Operators -- 4. Processing - Recognition of Signals -- References -- Characterisation of Beam Splitters L. Fichtner and M. Gabler -- 1. Introduction and Main Result -- 2. The Bosonic Fock Space -- 2.1. Representation of r(L2(G)) as an L2-Space -- 2.2. M(A) and its Factorisation -- 2.3. Tensor Products of M(A) -- 2.4. Embedding M2(A) into M2(G) -- 3. Proof of Corollary 1 -- 4. Proof of Theorem 1 -- References -- Application of Entropic Chaos Degree to a Combined Quantum Baker's Map K. Inoue, M. Ohya and I. V. Volovich -- 1. Introduction -- 2. Classical Baker's Transformation -- 3. Quantum Baker's Map -- 4. Dynamics of Quantum Baker's Map -- 5. Entropic Chaos Degree -- 6. A Combined Quantum Baker's Map and Its Entropic Chaos Degree -- 7. Dependence of the Entropic Chaos Degree on the Combination Parameter a -- 8. Dependence of the Entropic Chaos Degree on N -- References -- On Quantum Algorithm for Multiple Alignment of Amino Acid Sequences S. Iriyama and M. Ohya -- 1. Introduction -- 2. Outline of Alignment -- 2.1. Language classes of alignment -- 3. Quantum Algorithm -- 3.1. Chaos Amplification -- 4. Quantum Algorithm of Multiple Alignment -- 5. Computational Complexity of Multiple Alignment -- References.

Quantum-Like Models for Decision Making in Psychology and Cognitive Science A. Khrennikov -- 1. Introduction -- 2. Prisoner's Dilemma -- 3. Contexts in Gambling Experiments -- 4. Measure of Interference -- 5. Interference in Disjunction Experiments -- 6. Quantum-like Representation Algorithm - QLRA -- 7. Hilbert-space Representation of Mental Information and Decision Making -- 8. Concluding Remarks: Accardian Models, Ohya's Adaptive Dynamics -- Acknowledgments -- References -- On Completely Positive Non-Markovian Evolution of a d-Level System A. Kossakowski and R. Rebolledo -- 1. Introduction -- 2. Notations -- 3. Non-Markovian Master Equations -- 4. Modified non-Markovian Master Equations -- Acknowledgment -- References -- Measures of Entanglement - A Hilbert Space Approach W. A. Majewski -- 1. Definitions and notations -- 2. Tomita-Takesaki scheme for transposition -- 3. PPT states on the Hilbert-space level -- 4. Effectiveness of the description of PPT states -- 5. Measures of entanglement -- Acknowledgments -- References -- Some Characterizations of PPT States and Their Relation T. Matsuoka -- 1. Introduction -- 2. Entanglement mapping and PPT condition -- 2.1. Pure state case -- 2.2. Characterization of PPT states by entanglement mapping -- 3. Characterization of CP and CCP map via St!Zirmer's isomorphism -- 4. Majewski's description of PPT states on Tomita-Takesaki scheme (see [11], [12]) -- 5. Equivalence between two types of characterization of PPT states -- References -- On the Dynamics of Entanglement and Characterization of Entangling Properties of Quantum Evolutions M. Michalski -- 1. Introduction -- 2. The Heisenberg model -- References -- Perspective from Micro-Macro Duality - Towards Non-Perturbative Renormalization Scheme I. Ojima -- 1. Micro-Macro duality -- 2. Broken scale invariance: imaginary-time vs. real-time.

2.1. How to formulate broken scale invariance -- 2.2. Scale changes on states -- 3. N udearity Condition & Renormalizability -- 3.1. Point-like fields as idealized local observables -- 3.2. Comparison between OPE & Wigner-Eckhart theorem -- Acknowledgement -- References -- A Simple Symmetric Algorithm Using a Likeness with Introns Behavior in RNA Sequences M. Regoli -- 1. Introduction -- 2. The algorithm -- 3. The boxes -- 3.1. The box Bl -- 3.2. Box B2 -- 4. Decoding message -- 5. Statistical informations about the size of output -- 6. Next step -- 7. Final considerations -- References -- Some Aspects of Quadratic Generalized White Noise Functionals Si Si and T. Hida -- 1. Introduction -- 2. Quadratic functionals of white noise -- 3. Duality in the space of quadratic generalized functionals -- 4. Quadratic forms of at'S and a -- 'So -- 5. Concluding remarks -- Acknowledgements -- References -- Analysis of Several Social Mobility Data Using Measure of Departure from Symmetry K. Tahata, K. Yamamoto, N. Miyamoto and S. Tomizawa -- 1. Introduction -- 2. Review of model and measure of symmetry -- 2.1. Symmetry model -- 2.2. Measure -- 3. Approximate confidence interval for measure -- 4. Comparison between occupational mobility data -- 5. Concluding remarks -- References -- Time in Physics and Life Science 1. V. Volovich -- 1. Introduction -- 2. Time Travel -- 3. Black Hole/Wormhole Production -- 4. Models of Life -- Acknowledgements -- References -- Note on Entropies in Quantum Processes N. Watanabe -- 1. Introduction -- 2. Quantum Channels -- 3. Quantum Mutual Entropy Type Measures -- 3.1. Ohya Mutual Entropy and Capacity -- 3.2. Coherent Entropy and Lindblad-Nielsen Entropy -- 4. Quantum Measurement Process -- 5. Quantum Communication Process -- 5.1. Attenuation Process -- 6. Quantum Teleportation Process -- 7. Quantum Computational Process.

References -- Basics of Molecular Simulation and Its Application to Biomolecules T. Ando and 1. Yamato -- 1. Introduction -- 2. Molecular Dynamics Simulation -- 2.1. Governing Equation of Molecular Dynamics -- 2.2. Potential Functions for Biomoleules -- 2.3. Integration Algorithm -- 2.4. Simulation Conditions -- 2.5. Current Limitations of Molecular Dynamics -- 3. Protein Folding Problem -- 4. Brownian Dynamics Simulation -- 4.1. Brownian Dynamics Algorithm -- 4.2. Force Field -- 4.3. Folding Simulations of a-Helical and p-Hairpin Peptides -- 4.3.1 . Folding trajectories -- 4.3.2. Energy components -- 4.3.3. Cluster analysis -- 5. Conclusions -- Acknowledgments -- References -- Theory of Proton-Induced Superionic Conduction in Hydrogen-Bonded Systems H. Kamimura -- 1. Introduction -- 2. Theory of superionic conduction in the superionic phase -- 2.1. Mechanism of proton-induced superionic conduction -- 2.2. Formula for proton-induced ionic mobility in the superionic phase -- 2.3. Comparison between quantum mechanical and classical diffusion times -- 2.4. Estimation of the quantum mechanical mobility and ionic conductivity for Rb3 H(Se04h -- 2.5. Summary of Section 2 and concluding remarks -- 3. Theory of superionic conduction below and at the ferroelastic phase transition -- 3.1. The Ginzburg-Landau theory for the ferroelastic phase transition in M3H(X04h -- 3.2. A new idea for explaining the divergent behavior of ionic conduction just below and at T = Tc in the ferroelastic phase -- 3.3. Derivation of an energy criterion for the realization of the mixed phase by a simple consideration -- 3.4. Expression of the ionic conductivity for T Tc -- 3.5. Summary of Section 3 -- Acknowledgments -- References -- Massive Collection of Full-Length Complementary DNA Clones and Microarray Analyses: Keys to Rice Transcriptome Analysis S. Kikuchi -- 1. Introduction.

1.1. Massive collection offull-length cDNA clones and their sequence information: starting materials for transcriptome analysis.
Abstract:
The purpose of this proceedings volume is to look for interdisciplinary bridges in mathematics, physics, information and life sciences, in particular, research for new paradigms for information and life sciences on the basis of quantum theory. The main areas in this volume are all related to one of the following subjects: (1) mathematical foundation of quantum mechanics, (2) quantum information, (3) quantum algorithm and computation, (4) quantum communication, (5) white noise analysis and quantum dynamics, (6) chaos dynamics and adaptive dynamics, (7) experimental studies of quantum computer, (8) bio-informatics and (9) genome analysis.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: