Cover image for Magnetic Nanoparticles : Properties, Synthesis and Applications.
Magnetic Nanoparticles : Properties, Synthesis and Applications.
Title:
Magnetic Nanoparticles : Properties, Synthesis and Applications.
Author:
Acklin, Beate.
ISBN:
9781619424456
Personal Author:
Physical Description:
1 online resource (336 pages)
Series:
Nanotechnology Science and Technology
Contents:
MAGNETIC NANOPARTICLES -- MAGNETIC NANOPARTICLES -- CONTENTS -- PREFACE -- FORMULATIONS FOR LOCAL, MAGNETICALLY MEDIATED HYPERTHERMIA TREATMENT OF SOLID TUMORS -- ABSTRACT -- 1. INTRODUCTION: UNDERSTANDING THE COMPLEXITY OF HYPERTHERMIA -- 1.1. Biological and Clinical Rationale for Induced Hyperthermia -- 1.1.1. Heat Effects and Toxicity at Cellular Level -- Morphostructural Changes Induced by Heat -- Metabolic Effects of Heat -- Heat Cytotoxicity and Thermal Dosimetry -- Molecular Biology of Stress Responses: Heat Shock, Hypoxia and Connections -- 1.2.1. Hyperthermia in Oncology -- Hyperthermia Treatment Modalities -- Hyperthermia and Solid Tumor Pathophysiology -- Hyperthermic Therapy Combinations, Emphasis on Embolization Procedures -- Hyperthermia and Immunological Considerations -- 1.2. Current Technical Status of Induced Hyperthermia -- 1.2.1. Physical Modalities for Induced Hyperthermia -- 1.2.2. Inductive Modalities -- 1.2.3. Magnetic Losses -- Hysteresis Losses -- Losses by Magnetic Relaxations -- 2. FORMULATIONS FOR LOCAL HYPERTHERMIA TREATMENT OF HARD TISSUE TUMORS -- 2.1. Magnetic Ceramic, Glass and Glass-Ceramic Materials -- 2.2. Glass/Ceramic Particles and Microspheres -- 2.3. Magnetic Materials for Cementoplasty -- 3. FORMULATIONS AND MINIMALLY INVASIVE PROCEDURES FOR MAGNETICALLY MEDIATED LOCAL HYPERTHERMIA TREATMENT OF SOFT TISSUE TUMORS -- 3.1. Arterial Injections and Arterial Embolization Hyperthermia (AEH) -- 3.1.1. Microparticles -- 3.1.2. Formulation Forming-Depot -- 3.2. Intratumoral Direct Injection Hyperthermia (DIH) -- 3.2.1. Formulation Forming Depot -- 3.2.2. Formulations Forming Implants In Situ -- 4. MAGNETIC LIPOSOMES AND LOCAL HYPERTHERMIA TREATMENT OF TUMORS -- 4.1. General Characteristics of Liposomes -- 4.2. Magnetoliposomes and Magnetically Induced Local Hyperthermia of Tumor.

4.3. Immunoconjugated Magnetoliposomes for the Systemic Approach of Magnetically Mediated Hyperthermia of Solid Tumors -- 4.3.1. Magnetoliposomes Conjugated with Anti CA9 (Human MN) Antigen Antibodies -- 4.3.2. Magnetoliposomes Coupled with Anti-HER2 Antibodies -- Anti-HER2 Immunoconjugated Magnetoliposomes and Pharmaceutical Considerations Associated with Anti-HER2 Antibodies -- Anti-HER2 Immunoconjugated Magnetoliposomes and Micropharmacology Considerations Associated with Non Magnetic Anti-HER2 Immunoliposomes -- 4.4. Cationic Magnetoliposomes in Bone Metastasis of Prostate Cancer Model -- 4.5. Neutral Magnetoliposomes: Targeting Draining Lymphatic Nodes for Magnetic Hyperthermia -- CONCLUSION -- ACKNOWLEDGMENTS -- 6. LIST OF ABBREVIATIONS, UNITS, NOTATIONS AND SYMBOLS -- REFERENCES -- ORGANIC BASED MAGNETIC NANOPARTICLES-POLYMERS AND VARIOUS CALIXARENE BASED MAGNETIC NANOPARTICLES -- ABSTRACT -- INTRODUCTION -- 1. MAGNETIC NANOPARTICLE- POLYMERS -- 2. CALIXARENE BASED MAGNETIC NANOPARTICLES -- REFERENCES -- BIOCOMPATIBLE NANOMATERIALS: SYNTHESIS, CHARACTERIZATION AND APPLICATIONS -- ABSTRACT -- INTRODUCTION -- Synthesis of SPIONs -- Coating of MNPs -- Enzyme Immobilization on Magnetic Carriers -- CONCLUSION -- ACKNOWLEDGEMENT -- REFERENCES -- FERROMAGNETISM IN CARBON AND BORON NITRIDE NANOSTRUCTURES -- ABSTRACT -- 1. THE NATURE OF THE CARBON BOND -- 2. FERROMAGNETISM -- 3. FULLERENES -- (a) Properties of C60 -- (b) Experimental Observations of Magnetism in C60 -- (c) Theoretical Predictions of Ferromagnetism in Polymers of C60 -- 4. CARBON AND BORON NITRIDE NANOTUBES -- (a) Properties -- (b) Experimental Observations of Ferromagnetism in Carbon and Boron Nitride Nanotubes -- (c) Theoretical predictions of Magnetism in Nanotubes -- 5. GRAPHENE -- (a) Properties -- (b) Magnetism in Graphene -- (c) Theoretical Predictions for Graphene.

CONCLUSION -- REFERENCES -- ANALYSIS OF COMPLEX MATERIALS USING FUNCTIONALIZED MAGNETIC NANOPARTICLES -- ABSTRACT -- 1. INTRODUCTION -- 2. SYNTHESIS AND CHARACTERIZATION OF MAGNETIC NANOPARTICLES WITH PRECIPITATION OF WET PROCESS METHOD -- 2.1. Preparation of Iron Oxide MNPs by Ichiyanagi Method -- 2.3. Preparation of MNPs by Moritake Method -- 2.4. Functionalization of MNP by Silanization Method -- 2.5. Physical Characterization of Nanoparticles -- 2.6. Functionalization of MNP -- 3. MAGNETIC NANOPARTICLE-BASED MASS SPECTROMETRY FOR THE DETECTION OF BIOMOLECULES IN CULTURED CELLS -- 3.1. Cellular MS -- 3.2. Physical Characterization of Nanoparticles -- 3.3. Ability of MNPs to Ionize Pure Analytes -- 3.4. Application of Nano-PALDI MS to Cultured Cells Using a Magnet -- 4. MAGNETIC NANOPARTICLE-BASED MASS SPECTROMETRY FOR THE DETECTION OF COMPLEX SAMPLES -- 4.1. Nanotrap and Mass Analysis of Aromatic Molecules by Phenyl Group-modified Nanoparticle -- 4.2. Characterization and Evaluation of Phenyl Group-modified (Ph-MNPs) as Matrices for Mass Spectrometry -- 5. SUMMARY AND PERSPECTIVE -- ACKOWLEDGMENT -- REFERENCES -- SYNTHESIS CONDITION REFLECTED STRUCTURAL AND MAGNETIC PROPERTIES OF LI0.5CR0.5FE2O4 NANOPARTICLES -- ABSTRACT -- 1. INTRODUCTION -- 2. EXPERIMENTAL PROCEDURE -- 3. RESULTS AND DISCUSSION -- 3.1. Structural Properties -- 3.1.1. Cation Distribution -- 3.1.2. Infrared Spectroscopy -- 3.2. Magnetic Properties -- 3.3. Dielectric Properties -- CONCLUSION -- REFERENCES -- FACILE AND ENVIRONMENTALLY FRIENDLY PREPARATION METHODS OF IRON-COBALT ALLOY AND MAGNETITE NANOPARTICLES -- ABSTRACT -- INTRODUCTION -- ROOM-TEMPERATURE PREPARATION OF IRON-COBALT NANOPARTICLES VIA COPRECIPITATION USING SODIUM BOROHYDRIDE -- SIZE CONTROL OF MAGNETITE NANOPARTICLES BY ORGANIC SOLVENT-FREE CHEMICAL COPRECIPITATION AT ROOM TEMPERATURE -- CONCLUSION.

REFERENCES -- MAGNETIC NANOPARTICLES: COMPUTER SIMULATIONS, CHEMICAL SYNTHESES, AND BIOMEDICAL DIAGNOSISES -- ABSTRACT -- 1. INTRODUCTION -- 2. COMPUTER SIMULATION -- 2.1. Energy Model -- 2.2. Simulating Procedure -- 2.3. Simulated Results -- 2.3.1. Blocking Temperature -- 2.3.2. Coercive Field -- 3. CHEMICAL SYNTHESES -- 3.1. Preparation of Fe3O4 @ SiO2 nanoparticles -- 3.2. Experimental Characters -- 4. BIOMEDICAL DIAGNOSES -- 4.1. Attachment Anti-HPV18 Antibody on Silica-Coated Fe3O4 for Cervical Cancer Diagnosis -- 4.1.1. Preparation -- 4.1.2. Results -- 4.2. Immobilizing E. Coli O175:H7 on Fe3O4@SiO2 for Diarrhea Diagnosis -- 4.2.1. Preparation -- 4.2.2. Results -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- ADVANCEMENT OF THE MAGNETIC BEADS TECHNOLOGY IN DRUG DISCOVERY -- ABSTRACT -- REFERENCES -- DIPOLAR INTERACTION IN QUASI-TWO-DIMENSIONAL CRYSTAL ARRAYS OF MAGNETIC PARTICLES -- Abstract -- 1.Introduction -- 2.Dipolarfieldanddipolarenergy:latticeandshapecontribu-tions -- 2.1.DipolarFieldDuetoaSingleMagnetic2DCrystalLayer -- 2.1.1.Q2DLorentzPotential -- 2.1.2.Q2DDemagnetizationPotential -- 2.2.DipolarFieldDuetoSeveralMagnetic2DCrystalLayers -- 2.3.DipolarEnergyofaSystemWithSeveralMagnetic2DCrystalLayers -- 2.4.EntropyofaSystemWithSeveralMagnetic2DCrystalLayers -- 3.Numericalresults:roleoftheinterlayerdipolarcoupling -- 3.1.ArrangementsofMagnetic2DCrystalLayers -- 3.2.DipolarField:NumberofCoupledLayers -- 3.3.DipolarAnisotropyEnergy:EffectsofTwoCoupledLayers -- 3.4.DipolarAnisotropyEnergy:DemagnetizationEffects -- 3.5.MagneticAnisotropyEnergy:Non-DipolarContributions -- 3.6.Entropy:GroundStateConfigurations -- 4.Conclusion -- References -- INDEX.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: