Cover image for Iron-Sulfur Clusters in Chemistry and Biology.
Iron-Sulfur Clusters in Chemistry and Biology.
Title:
Iron-Sulfur Clusters in Chemistry and Biology.
Author:
Andrade, Susana L.A.
ISBN:
9783110308426
Personal Author:
Physical Description:
1 online resource (648 pages)
Contents:
Contents -- Preface -- Contributing authors -- 1 Iron-sulfur proteins: a historical perspective -- 1.1 Framing the scene -- 1.2 The early days of "nonheme iron" -- 1.3 Of proteins and analogues -- 1.4 Beyond electron shuttles -- 1.5 How are FeS clusters synthesized in cells? -- Acknowledgment -- References -- 2 Chemistry of iron-sulfur clusters -- 2.1 Introduction -- 2.2 Electronic structure of Fe-S complexes -- 2.2.1 Spin-polarization and strong metal-ligand bonds -- 2.2.2 Spin-coupling and metal-metal bonds -- 2.2.3 Spin resonance delocalization in mixed-valence iron pairs -- 2.3 Unique properties of Fe-S clusters -- 2.3.1 Stable rigid clusters mean low reorganization energy -- 2.3.2 Polynuclear clusters mean multiple valency -- 2.3.3 Resonance delocalization and [Fe4S4(Cys)4] cluster conversion -- 2.4 Summary -- Acknowledgments -- References -- 3 Quantitative interpretation of EPR spectroscopy with applications for iron-sulfur proteins -- 3.1 Introduction -- 3.2 Basic EPR theory -- 3.3 g Factor anisotropy -- 3.4 Hyperfine structure -- 3.5 Ligand interactions -- 3.6 Spin Hamiltonian -- 3.7 Basic EPR instrumentation -- 3.8 Simulation of powder spectra -- 3.9 Quantitative aspects -- 3.10 Examples -- 3.10.1 S = 1/2 systems -- 3.10.2 Spin systems with S = 3/2, 5/2, 7/2, etc. -- 3.10.3 Spin systems with S = 1, 2, 3, etc -- 3.11 Conclusion -- References -- 4 The utility of Mössbauer spectroscopy in eukaryotic cell biology and animal physiology -- 4.1 Introduction -- 4.2 Transitions associated with MBS -- 4.3 Coordination chemistry of iron -- 4.4 Electron spin angular momentum and EPR spectroscopy -- 4.5 High-spin vs low-spin FeII and FeIII complexes -- 4.6 Isomer shift (d) and quadrupole splitting (ΔEQ) -- 4.7 Effects of a magnetic field -- 4.8 Slow vs fast relaxation limit.

4.9 MB properties of individual Fe centers found in biological systems -- 4.10 Magnetically interacting Fe aggregates -- 4.11 Insensitivity of MBS and a requirement for 57Fe enrichment -- 4.12 Invariance of spectral intensity among Fe centers -- 4.12.1 Mitochondria -- 4.12.2 Vacuoles -- 4.12.3 Whole yeast cells -- 4.12.4 Human mitochondria and cells -- 4.12.5 Blood -- 4.12.6 Heart -- 4.12.7 Liver -- 4.12.8 Spleen -- 4.12.9 Brain -- 4.13 Limitations of MBS and future directions -- Acknowledgments -- References -- 5 The interstitial carbide of the nitrogenase M-cluster: insertion pathway and possible function -- 5.1 Introduction -- 5.2 Proposed role of NifB in carbide insertion -- 5.3 Accumulation of a cluster intermediate on NifB -- 5.4 Investigation of the insertion of carbide into the M-cluster -- 5.5 Tracing the fate of carbide during substrate turnover -- References -- 6 The iron-molybdenum cofactor of nitrogenase -- 6.1 Introduction -- 6.2 The metal clusters of nitrogenase -- 6.3 Structure of FeMoco -- 6.4 Redox properties of FeMoco -- 6.5 An overlooked detail: the central light atom -- 6.6 The nature of X -- 6.7 Insights into the electronic structure of FeMoco -- 6.8 A central carbon - consequences and perspectives -- Acknowledgments -- References -- 7 Biotin synthase: a role for iron-sulfur clusters in the radical-mediated generation of carbon-sulfur bonds -- 7.1 Introduction -- 7.2 Sulfur atoms in biomolecules -- 7.3 Biotin chemistry and biosynthesis -- 7.4 The biotin synthase reaction -- 7.5 The structure of biotin synthase and the radical SAM superfamily -- 7.6 The [4Fe-4S]2+ cluster and the radical SAM superfamily -- 7.7 The [2Fe-2S]2+ cluster and the sulfur insertion reaction.

7.8 Characterization of an intermediate containing 9-MDTB and a [2Fe-2S]+ cluster -- 7.9 Other important aspects of the biotin synthase reaction -- 7.10 A role for iron-sulfur cluster assembly in the biotin synthase reaction -- 7.11 Possible mechanistic similarities with other sulfur insertion radical SAM enzymes -- Acknowledgment -- References -- 8 Molybdenum-containing iron-sulfur enzymes -- 8.1 Introduction -- 8.2 The xanthine oxidase family -- 8.2.1 D. gigas aldehyde:ferredoxin oxidoreductase -- 8.2.2 Bovine xanthine oxidoreductase -- 8.2.3 Aldehyde oxidases -- 8.2.4 CO dehydrogenase -- 8.2.5 4-Hydroxybenzoyl-CoA reductase -- 8.3 The DMSO reductase family -- 8.3.1 DMSO reductase and DMS dehydrogenase -- 8.3.2 Polysulfide reductase -- 8.3.3 Ethylbenzene dehydrogenase -- 8.3.4 Formate dehydrogenases -- 8.3.5 Bacterial nitrate reductases -- 8.3.6 Arsenite oxidase and arsenate reductase -- 8.3.7 Pyrogallol:phloroglucinol transhydroxylase -- 8.4 Prospectus -- References -- 9 The role of iron-sulfur clusters in the biosynthesis of the lipoyl cofactor -- 9.1 Introduction -- 9.2 Discovery of LA -- 9.3 Functions of the lipoyl cofactor -- 9.3.1 Primary metabolism -- 9.3.2 Antioxidant -- 9.4 Pathways for lipoyl cofactor biosynthesis -- 9.4.1 Exogenous pathway -- 9.4.2 Endogenous pathway -- 9.5 Characterization of LipA -- 9.5.1 Discovery of LipA -- 9.5.2 In vivo characterization of LipA -- 9.5.3 LipA is an iron-sulfur enzyme -- 9.5.4 LipA is an RS enzyme -- 9.5.5 Product inhibition of LipA -- 9.5.6 LipA contains two [4Fe-4S] clusters -- 9.5.7 Two distinct roles for the iron-sulfur clusters -- 9.5.8 A unique intermediate -- 9.5.9 A proposed mechanism for the biosynthesis of the lipoyl cofactor -- 9.6 Conclusions -- Acknowledgment -- References.

10 Iron-sulfur clusters and molecular oxygen: function, adaptation, degradation, and repair -- 10.1 Introduction -- 10.2 Fe-S clusters - reasons for their abundance -- 10.2.1 Origin of Fe-S clusters -- 10.2.2 Functions of Fe-S clusters -- 10.3 Oxygen and Fe-S clusters -- 10.3.1 Properties of molecular oxygen and its partially reduced species -- 10.3.2 Oxidative damage to Fe-S clusters -- 10.3.3 Molecular mechanisms of oxidative damage to Fe4S4 clusters -- 10.3.4 Fe3S4 to Fe2S2 cluster conversion in FNR -- 10.3.5 X-ray crystallographic studies -- 10.3.6 Alternative reactions can occur and compete -- 10.3.7 Structural changes -- 10.4 Adaptation to oxygen -- 10.4.1 Switch between metabolisms or restriction to niches -- 10.4.2 O2-tolerant NiFe hydrogenases -- 10.4.3 Protective systems against ROS -- 10.4.4 Evolutionary replacement of Fe-S clusters to keep essential functions in aerobic organisms -- 10.5 Conclusions -- References -- 11 A retrospective on the discovery of [Fe-S] cluster biosynthetic machineries in Azotobacter vinelandii -- 11.1 Introduction -- 11.2 An introduction to nitrogenase -- 11.3 Approaches to identify gene-product and product-function relationships -- 11.4 FeMoco and development of the scaffold hypothesis for complex [Fe-S] cluster formation -- 11.5 An approach for the analysis of nif gene product function -- 11.5.1 Phenotypes associated with loss of NifS or NifU function indicate their involvement in nitrogenase-associated [Fe-S] cluster formation -- 11.5.2 NifS is a cysteine desulfurase -- 11.5.3 Extension of the scaffold hypothesis to NifU function -- 11.5.4 Discovery of isc system for [Fe-S] cluster formation and functional cross-talk among [Fe-S] cluster biosynthetic systems -- 11.6 The Isc system is essential in A. vinelandii.

11.7 There is limited functional cross-talk between the Nif and Isc systems -- 11.8 Closing remarks -- Acknowledgments -- References -- 12 A stress-responsive Fe-S cluster biogenesis system in bacteria - the suf operon of Gammaproteobacteria -- 12.1 Introduction to Fe-S cluster biogenesis -- 12.2 Sulfur trafficking for Fe-S cluster biogenesis -- 12.3 Iron donation for Fe-S cluster biogenesis -- 12.4 Fe-S cluster assembly and trafficking -- 12.5 Iron and oxidative stress are intimately intertwined -- 12.6 Stress-response Fe-S cluster biogenesis in E. coli -- 12.7 Sulfur trafficking in the stress-response Suf pathway -- 12.8 Stress-responsive iron donation for the Suf pathway -- 12.8.1 SufD -- 12.8.2 Iron storage proteins -- 12.8.3 Other candidates -- 12.9 Unanswered questions about Suf and Isc roles in E. coli -- Acknowledgment -- References -- 13 Sensing the cellular Fe-S cluster demand: a structural, functional, and phylogenetic overview of Escherichia coli IscR -- 13.1 Introduction -- 13.2 General properties of IscR -- 13.3 [2Fe-2S]-IscR represses Isc expression via a negative feedback loop -- 13.4 IscR adjusts synthesis of the Isc pathway based on the cellular Fe-S demand -- 13.5 IscR has a global role in maintaining Fe-S homeostasis -- 13.6 Fe-S cluster ligation broadens DNA site specificity for IscR -- 13.7 Phylogenetic analysis of IscR -- 13.8 Binding to two classes of DNA sites allows IscR to differentially regulate transcription in response to O2 -- 13.9 Roles of IscR beyond Fe-S homeostasis -- 13.10 Additional aspects of IscR regulation -- 13.11 Summary -- Acknowledgments -- References -- 14 Fe-S assembly in Gram-positive bacteria -- 14.1 Introduction -- 14.2 Fe-S proteins in Gram-positive bacteria -- 14.3 Fe-S cluster assembly orthologous proteins -- 14.3.1 Clostridia-ISC system -- 14.3.2 Actinobacteria-SUF.

14.3.3 Bacilli-SUF.
Abstract:
This volume on iron-sulfur clusters includes chapters that cover the history of the discovery of iron-sulfur clusters in the 1960s to discoveries of their role in the enzyme, aconitase (1980s), and numerous other proteins. It explains basic chemistry principles, how microbes, plants, and animals synthesize these complex prosthetic groups, and why it is important to understand the chemistry and biogenesis of FeS proteins.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Electronic Access:
Click to View
Holds: Copies: