Cover image for Methods for Solving Mathematical Physics Problems.
Methods for Solving Mathematical Physics Problems.
Title:
Methods for Solving Mathematical Physics Problems.
Author:
Agoshkov, V.I.
ISBN:
9781904602804
Personal Author:
Physical Description:
1 online resource (334 pages)
Contents:
Index -- A -- adjoint nonlinear operators -- alternating-direction method -- approximation requirement -- Arzelà-Ascoli theorem -- B -- Banach space -- Bessel inequality -- Bochner transform -- boundary of the domain -- boundary-value conditions -- boundary-value conditions of the first -- boundary-value conditions of the third -- boundary-value problem -- Bubnov-Galerkin method -- C -- Cauchy problem -- Cauchy-Bunyakovskii inequality -- Cauchy-Kovalevskii theorem -- characteristic function -- Chebyshef polynomial -- Chernov formula -- Chézy coefficient -- class of functions -- closed linear operator -- coercivity condition -- collocation method -- compact set -- completeness equation -- convergence in respect to energy -- convergence theorem -- convolution transform -- Coriolis parameter -- Courant method -- Cranck-Nicholson scheme -- cylindrical coordinates -- cylindrical function -- D -- d'Alembert operator -- -- differential operator -- diffusion length -- dipole coefficient -- direct methods -- Dirichlet boundary condition -- Dirichlet integral -- Dirichlet problem -- discrete Laplace transform -- domain of definition of the equation -- Dubois-Raymond lemma -- E -- eigen subspace -- eigenfunction -- eigenvalue problems -- energetic space -- energy method -- energy space -- equation of state -- equations of continuity -- Euclidean distance -- Euclidean space -- Euler equation -- Euler equation of motion -- F -- factorisation method -- finite-difference methods -- first Green formula -- Fourier coefficient -- Fourier map -- Fourier series -- Fourier transform -- Fourier-Bessel integral -- Fréchet derivative -- Fréchet differential -- Fredholm equation -- Fredholm integral equation -- functional of the energy method -- G -- Galerkin approximation -- Galerkin method -- Galerkin-Petrov method -- Gateaux derivative.

Gauss hypergeometrical series -- generalized derivatives -- generalized Minkovskii inequality -- generalized solutions -- generating function -- Gilbert transform -- Green formula -- Green function -- H -- Haar system -- Hankel function -- Hankel image -- Hankel transform -- Hardy inequality -- heat conductivity equation -- Helmholtz equation -- Hermite polynomial -- Hermitian weakly polar kernel -- Hilbert spaces -- Hilbert transform -- Hilbert-Schmidt orthogonalization -- Hilbert-Schmidt theorem -- Hölder function -- Hölder inequality -- Hölder space -- hyperbolicity condition -- hyperplane method -- I -- ill-posed problem -- integral Green formula -- internal point of the set -- internal spherical functions -- isometric space -- isomorphous space -- J -- jump of the normal derivative -- K -- Kantorovich method -- Kellog theorem -- kernel -- kinetic coagulation equation -- Kontorovich-Lebedev transform -- Kummer function -- L -- Laguerre polynomial -- Laguerre transform -- Laplace equation -- Laplace operator -- Laplace-Beltrami operator -- law of oscillation -- Lebesgue integral -- Lebesgue space -- Legendre polynomial -- Legendre transform -- linear functional -- linear normalised space -- linear operator -- linear sets -- Lipschitz inequality -- Lipschits condition -- logarithmic potential -- logarithmic simple layer potential -- longitudinal-transverse sweep -- Lyapunov surface -- M -- MacDonald function -- Mathieu equation -- Mathieu function -- Maxwell equations -- Mehler-Fock transform -- Meller-Fock transform -- Mellin transform -- method of arbitrary lines -- method of eigenfunctions -- method of Gauss exclusion -- method of integral identities -- method of least squares -- method of Marchuk's integral identity -- method of stationarisation -- method of two-cyclic multi-component splitting -- method of weak approximation.

Meyer transform -- minimising sequence -- mixed problem -- moments method -- multiplicity -- N -- Navier-Stokes equation -- neighbourhood of the set -- net method -- Neumann condition -- Neumann problem -- Newton iteration process -- Newton potential -- nonhomogeneous evolution equation -- normalized eigenfunction -- O -- one-dimensional wave equation -- oriented surface -- orthogonal basis -- orthogonal system -- orthonormalized system -- Ostrogradskii-Gauss formula -- P -- Parseval equality -- Parseval identity -- Parseval-Steklov equality -- periodicity conditions -- piecewise smooth surface -- Poincaré inequality -- Poincaré-Perron method -- point spectrum -- Poisson equation -- Poisson integral -- potential of the vector field -- predictor-corrector method -- problem of a string -- projection method -- projection-grid method -- Q -- quadrature method -- R -- reflexive real Banach space -- Reiss-Fischer theorem -- retardation time -- Riesz theorem -- Ritz method -- Rodrig formula -- S -- Schmidt equation -- Schwarz method -- second Green formula -- second Hankel function -- simple eigenvalue -- simple layer potential -- Sobolev classes -- Sobolev space -- special functions -- spherical function -- splitting method -- -- stability -- standing wave -- steepest descent method -- Stricker coefficient -- Struve function -- Sturm-Liouville operator -- super-harmonic function -- support -- sweep method -- sweeping method -- symmetric hyperbolic systems -- symmetric kernel -- T -- The minimisation condition J(uN) leads to a system -- three-dimensional wave equation -- transfer equation -- Trefftz method -- Tricomi equation -- Trotter formula -- two-cyclic method of weak approximation -- two-dimensional wave equation -- V -- variational formulation of problems -- variational method -- Volterra equation -- W -- wavelet integral transform.

wavelet transform -- weakly polar kernel -- Weber transform -- Weierstrass theorem -- Weierstrasse theorem -- weight function -- Y -- Young inequality.
Abstract:
The book examines the classic and generally accepted methods for solving mathematical physics problems (method of the potential theory, the eigenfunction method, integral transformation methods, discretisation characterisation methods, splitting methods). A separate chapter is devoted to methods for solving nonlinear equations. The book offers a large number of examples of how these methods are applied to the solution of specific mathematical physics problems, applied in the areas of science and social activities, such as energy, environmental protection, hydrodynamics, theory of elasticity, etc.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: