Cover image for Practical Applications of Radioactivity and Nuclear Radiations.
Practical Applications of Radioactivity and Nuclear Radiations.
Title:
Practical Applications of Radioactivity and Nuclear Radiations.
Author:
Lowenthal, Gerhart.
ISBN:
9780511153471
Personal Author:
Physical Description:
1 online resource (367 pages)
Contents:
Cover -- Half-title -- Title -- Copyright -- Contents -- Illustrations -- Tables -- Foreword -- Preface -- Chapter 1 Atoms, nuclides and radionuclides -- 1.1 Introduction -- 1.1.1 Radioactivity, from the 1890s to the 1990s -- 1.1.2 On the scope and content of this text -- 1.1.3 Joining a large scale enterprise -- Nuclear power and nuclear radiation applications -- Figures from Japan -- The role of research reactors -- 1.2 An historic interlude: from atoms to nuclei -- 1.2.1 When atoms ceased to be atoms -- 1.2.2 The atomic nucleus -- 1.3 Nuclei, nuclear stability and nuclear radiations -- 1.3.1 The birth of isotopes -- 1.3.2 Mass-energy conversions and the half life -- 1.3.3 From natural to man-made radioisotopes -- 1.3.4 The role of the neutron-to-proton ratio -- 1.3.5 An introduction to properties of radiations emitted during radioactive decays -- 1.3.6 Another nuclear radiation: the neutron -- 1.4 Activation processes -- 1.4.1 Nuclear fission reactors -- 1.4.2 Thermal neutron activations -- 1.4.3 Activation and decay -- 1.4.4 Other activation processes -- The production of neutron-poor radionuclides -- Positron emitters for nuclear medicine -- 1.5 Short and long half lives and their uses -- 1.5.1 Generators for short half life radionuclides -- 1.5.2 Isomeric decays with applications to nuclear medicine -- 1.5.3 Radionuclides with very long half lives -- 1.5.4 The energetics of decays by alpha and beta particle emissions -- 1.6 Parent half lives and daughter half lives -- 1.6.1 Three cases -- 1.6.2 Decay chain calculations -- 1.6.3 Transient and secular equilibrium -- Chapter 2 Units and standards for radioactivity and radiation dosimetry and rules for radiation protection -- 2.1 Introduction -- 2.2 Units and standards of radioactivity -- 2.2.1 A summary of their characteristics -- 2.2.2 The curie and the becquerel.

2.2.3 Secondary standards and secondary standard instruments -- 2.2.4 In-house standards -- 2.3 Radioactivity standards -- 2.3.1 Comments on their production and their purpose -- 2.3.2 The international dimension of radioactivity standards -- 2.4 Radiation dosimetry for radiation protection -- 2.4.1 Absorbed dose limitations -- 2.4.2 Units for exposure, absorbed and equivalent dose -- 2.4.3 Weighting factors… -- 2.5 Dose limits -- 2.5.1 The linear hypothesis and the ALARA principle -- 2.5.2 Deterministic and stochastic effects -- 2.5.3 Background doses and their relevance for radiation protection -- 2.6 Radiation protection in the laboratory -- 2.6.1 Classifications of sources and of laboratories -- 2.6.2 Time, distance and shielding -- 2.6.3 Coping with radioactive waste -- 2.6.4 The radiation advisory officer -- 2.6.5 Radiation monitors -- 2.6.6 Guarding against radioactive contamination -- 2.7 Dose rates from alpha, beta and gamma ray emitting radionuclides -- 2.7.1 Rules-of-thumb for work with alpha and beta particles -- 2.7.2 Dose rates from X and gamma radiations -- The dose equivalent rate constant, D -- Dose calculations -- Chapter 3 Properties of radiations emitted from radionuclides -- 3.1 Tools for applications -- 3.2 Properties of alpha particles -- 3.2.1 The nature and origin of alpha particles -- 3.2.2 Alpha particle interactions with matter -- 3.2.3 Ionisation intensities of alpha particles -- 3.3 Properties of beta particles -- 3.3.1 Beta particles and electrons -- 3.3.2 Beta particle applications -- 3.3.3 The scattering and backscattering of beta particles -- 3.3.4 An introduction to beta particle spectra -- 3.3.5 Surface density -- 3.4 Properties of gamma rays and X rays -- 3.4.1 Gamma rays and their decay data -- 3.4.2 X rays -- 3.4.3 Three types of gamma ray interactions -- 3.4.4 Photon attenuation, an overview.

3.4.5 Attenuation equations for narrow beam geometry -- 3.4.6 Photon attenuation measurements using µ -- 3.5 Pulse height spectra due to alpha particles and gamma rays -- 3.5.1 The response of detectors -- 3.5.2 Alpha particle spectra -- 3.5.3 Gamma ray spectra -- 3.6 Electron capture (EC), gamma rays and conversion electrons -- 3.6.1 EC decays and their use as quasi-pure gamma ray emitters -- 3.6.2 The internal conversion process -- 3.7 The role of mass energy in determining nuclear decays -- 3.7.1 Neutron-poor radionuclides -- 3.7.2 Positron decay and positron tomography -- 3.7.3 Multi gamma ray emitters -- 3.7.4 Three-pronged decays -- 3.8 Bremsstrahlung -- 3.8.1 Its origin -- 3.8.2 Bremsstrahlung intensities -- 3.9 Fluorescent radiations -- 3.9.1 Fluorescent X rays -- 3.9.2 Inner shell transitions -- 3.9.3 Auger electrons and fluorescent yields -- Chapter 4 Nuclear radiations from a user's perspective -- 4.1 The penetrating power of nuclear radiations -- 4.2 Radioactive sources -- 4.2.1 Radionuclides and their decay schemes -- 4.2.2 Source making and counting procedures -- Laboratory equipment -- Procedures for making thin sources -- 4.2.3 Sealed sources -- 4.2.4 Liquid scintillation counting to minimise source self-absorption -- 4.3 Gamma ray applications -- 4.3.1 The role of electronic instruments -- 4.3.2 NIM bin and portable equipment -- 4.3.3 Comments on instrumentation and its supply -- 4.4 Gamma ray counting with NaI(Tl) detectors -- 4.4.1 Further comments on NaI(Tl) detectors -- NaI(Tl), an inorganic scintillation detector -- Selected characteristics of integral assemblies -- Total efficiencies and peak-to-total ratios -- 4.4.2 Integral counting -- 4.4.3 Peak counting -- 4.4.4 Precautions to avoid errors due to Compton scatter -- 4.5 Corrections and precautions, part 1 -- 4.5.1 A summary -- 4.5.2 Dead time corrections.

4.5.3 Pulse pile-up, random and coincidence summing -- Randomly occurring effects -- Coincidence summing -- 4.5.4 Decay corrections -- 4.6 Corrections and precautions, part 2 -- 4.6.1 Unwanted radiations, a summary -- 4.6.2 Radioactive parents and daughters -- 4.6.3 Radionuclidic impurities -- 4.6.4 The gamma ray background -- 4.6.5 The alpha and beta particle background -- Chapter 5 Ionising radiation detectors -- 5.1 Radiation detectors, a summary -- 5.2 Characteristics of ionisation detectors -- 5.2.1 Saturation currents and gas multiplication -- 5.2.2 Three saturation chambers -- 5.2.3 Parallel plate and cylindrical chambers -- 5.3 Proportional and Geiger-Müller counters -- 5.3.1 Thin wire counters -- Operating principles -- Ion multiplication by collision -- 5.3.2 The Geiger-Müller counter -- 5.3.3 The proportional counter -- The proportional region -- Unsealed 4Pi windowless proportional counting -- Alpha and beta particle counting -- 5.4 Other detectors and detection methods -- 5.4.1 A matter of emphasis -- 5.4.2 Liquid scintillation (LS) counting -- Introduction -- Quenching agents -- Comments on LS counting procedures -- 5.4.3 Microcalorimetry for routine activity measurements -- Counting decays with thermal power -- Microcalorimetry for nuclear radiation applications -- 5.4.4 Neutron detection for scientific and industrial applications -- An overview -- Proportional counting -- Measurements using high-intensity neutrons -- 5.5 An introduction to semiconductor detectors -- 5.5.1 A few historical highlights on energy spectrometry -- 5.5.2 Characteristics of germanium and silicon detectors -- 5.5.3 Lithium drifted and high-purity germanium detectors -- 5.5.4 Further comments on silicon detectors -- 5.5.5 Detectors made from crystals of semiconducting compounds -- 5.5.6 Energy resolution -- 5.5.7 A postscript on semiconducting detectors.

Chapter 6 Radioactivity and countrate measurements and the presentation of results -- 6.1 An introduction to radioactivity measurements -- 6.1.1 Problems -- 6.1.2 A role for secondary standard instruments -- 6.2 Comments on the preparation of radioactivity standards -- 6.2.1 Problems with beta particle emitters -- 6.2.2 Accurate radioactivity measurements -- 6.3 4PiGamma pressurised ionisation chambers -- 6.3.1 Introduction -- 6.3.2 Two types of 4PiGamma pressurised ionisation chambers -- 6.3.3 Dose calibrators -- 6.3.4 General purpose pressurised ionisation chambers -- Their role as precision instruments -- Activity calibrations -- The calibration graph -- 6.4 Gamma ray spectrometers and gamma ray spectrometry -- 6.4.1 Towards multi gamma ray spectrometry -- 6.4.2 Escape peaks -- 6.4.3 Energy calibrations -- 6.4.4 Energy resolution -- 6.4.5 Full energy peak efficiency calibration -- Introduction -- Preparatory procedures -- The calibration -- 6.4.6 Secondary standard instruments: strong and weak points -- 6.5 Results, part 1: collecting the data -- 6.5.1 Five components for a complete result -- 6.5.2 Errors and uncertainties -- 6.6 Results, part 2: Poisson and Gaussian statistics -- 6.6.1 A first look at statistical distributions -- 6.6.2 The Poisson distribution -- 6.6.3 Gaussian statistics -- 6.6.4 Confidence limits -- 6.7 Other characteristics of results and statistical tests -- 6.7.1 Countrates and their combination -- 6.7.2 Tests for accuracy and consistency -- Accuracy -- Consistency -- 6.7.3 Tests for randomness -- 6.8 Moving on to applications -- Chapter 7 Industrial applications of radioisotopes and radiation -- 7.1 Introduction -- 7.1.1 A change of emphasis -- 7.1.2 An overview of industrial applications -- Summary -- Optimisation and control of processes in industrial plant -- Plant diagnostics -- Testing and inspection of materials.

Composition and structure of materials.
Abstract:
This book introduces radioisotopes and ionising radiations and their numerous applications.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Added Author:
Electronic Access:
Click to View
Holds: Copies: