Cover image for Optics in Our Time.
Optics in Our Time.
Title:
Optics in Our Time.
Author:
Al-Amri, Mohammad D.
ISBN:
9783319319032
Personal Author:
Physical Description:
1 online resource (509 pages)
Contents:
Intro -- Foreword -- Preface -- Contents -- About the Editors and Authors -- I History -- 1: A Very Brief History of Light -- 1.1 Introduction -- 1.2 Greeks and Antiquity -- 1.3 Islamic Period -- 1.4 Scientific Revolution -- 1.5 Light in Twentieth Century -- 1.6 Epilogue -- Bibliography -- 2: Ibn al-Haythamś Scientific Research Programme -- 2.1 Introduction -- 2.2 Between Ptolemy and Kepler: Ibn al-Haythamś Celestial Kinematics -- 2.3 Ibn al-Haythamś Reform of Optics -- 2.4 Conclusion -- References -- II Ultrafast Phenomena and the Invisible World -- 3: Ultrafast Light and Electrons: Imaging the Invisible -- 3.1 Origins -- 3.2 Optical Microscopy and the Phenomenon of Interference -- 3.3 The Temporal Resolution: From Visible to Invisible Objects -- 3.4 Electron Microscopy: Time-Averaged Imaging -- 3.5 2D Imaging and Visualization of Atoms -- 3.6 The Third Dimension and Biological Imaging -- 3.7 4D Ultrafast Electron Microscopy -- 3.8 Coherent Single-Electrons in Ultrafast Electron Microscopy -- 3.9 Visualization and Complexity -- 3.10 Attosecond Pulse Generation -- 3.11 Optical Gating of Electrons and Attosecond Electron Microscopy -- 3.12 Conclusion -- References -- III Optical Sources -- 4: The Laser -- 4.1 Introduction: A Laser in the Hands of Ibn al-Haytham -- 4.2 The Laser: An Optical Oscillator -- 4.2.1 Oscillators -- 4.2.2 The Optical Oscillator -- 4.2.3 Optical Amplification by Stimulated Emission -- 4.2.4 Laser Materials and Pumping Methods -- 4.3 Optical Resonators and Their Modes -- 4.3.1 Modes -- 4.3.2 The Gaussian Beam -- 4.4 Coherence of Laser Light -- 4.5 Pulsed Lasers -- 4.6 Conclusion -- Further Reading -- 5: Solid-State Lighting Based on Light Emitting Diode Technology -- 5.1 Historical Development of LEDs -- 5.2 The Importance of Nitride Materials -- 5.3 LED Basics -- 5.4 Fabrication of an LED Luminaire.

5.4.1 Efficiency and Efficacy -- 5.5 Research Challenges -- 5.5.1 Crystal Growth -- 5.5.2 Internal Electric Field -- 5.5.3 p-Type Doping -- 5.5.4 Green Gap and Efficiency Droop -- 5.5.5 Chip Design -- 5.5.6 Generation of White Light with LEDs -- 5.5.7 LED Packaging -- 5.6 LEDs for Lighting -- 5.6.1 Quality of LED Lighting -- 5.6.2 Efficacy -- 5.6.3 Lifetime -- 5.6.4 Cost -- 5.7 LED Lighting Applications: The Present and Future -- 5.7.1 General Illumination and Energy Saving -- 5.7.2 Circadian Rhythm Lighting -- 5.8 Chapter Summary -- References -- 6: Modern Electron Optics and the Search for More Light: The Legacy of the Muslim Golden Age -- 6.1 Introduction -- 6.2 Electron Optics -- 6.3 Parallels with Optical Microscopy -- 6.4 JJ Thomson and His Discovery, the Electron -- 6.5 The Principle of Electron-Solid Interaction -- 6.6 The Basic Components of Electron Microscopes -- 6.6.1 The Electron Source -- 6.6.2 The Probe-Forming Column (Electron Lenses) -- The Specimen Chamber -- 6.6.3 The Detectors -- 6.7 Fourth-Dimension Electron Microscopy or Time-Resolved Electron Microscopy -- 6.8 Lensless Electron Microscopy -- 6.9 Application of Electron Microscopy Towards Light-Producing Devices -- 6.10 Conclusions -- References -- IV Applications -- 7: The Dawn of Quantum Biophotonics -- 7.1 Overview: Toward Quantum Agri-Biophotonics -- 7.2 Fundamental Light-Matter Interactions and Spectroscopy of Biological Systems -- 7.3 Quantum-Enhanced Remote Sensing -- 7.3.1 Anthrax Detection in Real Time -- 7.3.2 Stand-Off Spectroscopy -- 7.3.3 Detection of Plant Stress Using Laser-Induced Breakdown Spectroscopy -- 7.3.4 Stand-off Detection Using Laser Filaments -- 7.4 Quantum Heat Engines -- 7.4.1 The Laser and the Photovoltaic Cell as a Quantum Heat Engine -- 7.4.2 The Photo-Carnot Quantum Heat Engine -- 7.4.3 Biological Quantum Heat Engines.

7.5 Emerging Techniques with Single Molecule Sensitivity -- 7.5.1 Coherent Surface-Enhanced Raman Spectroscopy -- 7.5.2 Cavity Ring-Down Spectroscopy -- 7.6 Superresolution Quantum Microscopy -- 7.6.1 Subwavelength Quantum Microscopy -- 7.6.2 Tip-Enhanced Quantum Bioimaging -- 7.7 Novel Light Sources -- 7.7.1 Fiber Sensors -- 7.7.2 Quantum Coherence in X-Ray Laser Generation -- 7.7.3 Coherent Control of Gamma Rays -- 7.8 Conclusion -- References -- 8: Optical Communication: Its History and Recent Progress -- 8.1 Historical Perspective -- 8.2 Basic Concepts Behind Optical Communication -- 8.2.1 Optical Transmitters and Receivers -- 8.2.2 Optical Fibers and Cables -- 8.2.3 Modulations Formats -- 8.2.4 Channel Multiplexing -- 8.3 Evolution of Optical Communication from 1975 to 2000 -- 8.3.1 The First Three Generations -- 8.3.2 The Fourth Generation -- 8.3.3 Bursting of the Telecom Bubble in 2000 -- 8.4 The Fifth Generation -- 8.5 The Sixth Generation -- 8.5.1 Capacity Limit of Single-Mode Fibers -- 8.5.2 Space-Division Multiplexing -- 8.6 Worldwide Fiber-Optic Communication Network -- 8.7 Conclusions -- References -- 9: Optics in Remote Sensing -- 9.1 Introduction -- 9.2 Historical Overview -- 9.2.1 Speed of Light -- 9.2.2 Fraunhofer and the Invention of Remote Sensing -- 9.2.3 Passive Remote Sensing -- 9.3 The Development of the Laser for Active Remote Sensing -- 9.4 LIDAR -- 9.4.1 The Precision Measurement of Distances -- 9.4.2 Measuring the Speed of an Object at a Distance Point -- 9.4.3 Measuring Sound Speed as a Function of Depth in the Ocean -- 9.4.4 Measuring Temperature as a Function of Depth in the Ocean -- 9.4.5 Detecting and Identifying Underwater Objects (Fish, Mines, etc.) -- 9.4.6 Trace Gas Detection -- 9.4.7 Femtosecond-Lidar Application for Influencing Weather Phenomena -- 9.4.8 Stand-Off Super-Radiant Spectroscopy -- 9.5 Conclusions.

References -- 10: Optics in Nanotechnology -- 10.1 Introduction -- 10.2 Optics in Nanometals: Nature of Interaction of Light with Metal -- 10.2.1 Plasma Model -- 10.2.2 Miniaturized Metal: Subwavelength Concentration of Light -- Bulk Material (3D) -- Thin Film or Sheet (2D) -- Nanowire (1D) -- Nanoparticles/Dot (0D) -- 10.2.3 Miniaturization-Induced Coloration of Metals -- 10.2.4 Plasmonic Lenses -- Confinement-Based Lensing -- Transmission-Based Lensing -- 10.2.5 Metamaterials: Negative Refractive Index -- 10.2.6 Heat Loss: Are Plasmonic-Based Devices Practical? -- 10.3 Optics in Nanosemiconductors -- 10.3.1 Bandgap and Excitons -- 10.3.2 Direct and Indirect Bandgap Materials -- 10.3.3 Enhancing and Blue Shifting of Luminescence by Quantum Confinement -- 10.3.4 Making Silicon Glow: Quantum Confinement -- 10.3.5 Optical Nonlinearity in Nanosilicon -- 10.3.6 Optical Gain in Nanosilicon-Based Material -- 10.4 Applications of Optics in Nanotechnology -- 10.4.1 Integration of Optics and Electronics -- 10.4.2 Confined Light in Service of Substance Detection -- 10.4.3 Nanofabrication and Nanolithography -- 10.4.4 Photovoltaics and Photocurrent -- 10.4.5 Solid State LED White Lighting -- 10.4.6 Plasmonic Hyperthermic-Based Treatment and Monitoring of Acute Disease -- 10.5 Plasmon Effect in Ancient Technology and Art -- 10.6 Alhasan Ibn Alhaytham (Alhazen) and the Nature of Light and Lusterware -- 10.7 From Alhazen to Newton to the Trio: Dispersion of Light -- 10.8 Conclusion -- References -- 11: Optics and Renaissance Art -- 11.1 Introduction -- 11.2 Analysis of Paintings -- 11.2.1 Jan van Eyck, The Arnolfini Marriage, 1434 -- 11.2.2 Lorenzo Lotto, Husband and Wife, 1523-1524 -- 11.2.3 Hans Holbein the Younger, The French Ambassadors to the English Court, 1532 -- 11.2.4 Robert Campin, The Annunciation Triptych (Merode Altarpiece), c1425-c1430.

11.3 Conclusions -- 11.4 Acknowledgments -- References -- 12: The Eye as an Optical Instrument -- 12.1 Introduction -- 12.2 The Anatomy of the Eye -- 12.3 The Quality of the Retinal Image -- 12.4 Peripheral Optics -- 12.5 Conclusions -- References -- 13: Optics in Medicine -- 13.1 Introduction -- 13.1.1 Why Optics in Medicine? -- 13.1.2 Global Healthcare Needs and Drivers -- 13.1.3 Historical Uses of Optics in Medicine -- 13.1.4 Future Trends -- 13.2 Early and Traditional Medical Optical Instruments -- 13.2.1 Head Mirror -- 13.2.2 Otoscope -- 13.2.2.1 History of the Otoscope -- 13.2.3 Ophthalmoscope -- 13.2.4 Retinoscope -- 13.2.5 Phoropter -- 13.2.6 Laryngoscope -- 13.3 Fiber Optic Medical Devices and Applications -- 13.3.1 Optical Fiber Fundamentals -- 13.3.2 Coherent and Incoherent Optical Fiber Bundles -- 13.3.3 Illuminating Guides -- 13.3.4 Fiberscopes and Endoscopes -- 13.3.5 Fused Fiber Faceplates and Tapers for Digital X-rays -- 13.4 Conclusions -- References -- V Quantum Optics -- 14: Atom Optics in a Nutshell -- 14.1 Introduction -- 14.2 Particles or Waves? -- 14.2.1 Light -- 14.2.2 Atoms -- 14.2.3 Particles and Waves -- 14.2.4 Atoms as Waves -- 14.2.5 Cold Atoms and Molecules -- 14.3 Atomic Microscope -- 14.4 Interferences -- 14.4.1 Atom Interferences -- 14.4.2 Atom Interferometry -- 14.4.3 Fundamental Studies -- 14.4.4 BEC Atom Interferometers -- 14.5 Outlook -- References -- 15: Slow, Stored and Stationary Light -- 15.1 Introduction -- 15.2 Slow Light, Stopped Light and Stationary Light: A Simple Picture -- 15.3 A Microscopic Picture of Light Propagation in a Medium -- 15.3.1 Absorption, Emission and Refraction -- 15.3.2 Group Velocity -- 15.4 Electromagnetically Induced Transparency -- 15.5 Slow Light, Stored Light and Dark-State Polaritons -- 15.5.1 Slow Light -- 15.5.2 Stopped Light and Quantum Memories for Photons.

15.5.3 Slow-Light Polaritons.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2022. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: