Cover image for Fuzzy Logic and Neural Networks : Basic Concepts & Application.
Fuzzy Logic and Neural Networks : Basic Concepts & Application.
Title:
Fuzzy Logic and Neural Networks : Basic Concepts & Application.
Author:
Alavala, Chennakesava R.
ISBN:
9788122428735
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (276 pages)
Contents:
Cover -- Preface -- Contents -- Chapter 1. Introduction -- 1.1 Fuzzy Logic (FL) -- 1.2 Neural Networks (NN) -- 1.3 Similarities and Dissimilarities Between FL and NN -- 1.4 Applications -- Question Bank -- References -- Chapter 2. Fuzzy Sets and Fuzzy Logic -- 2.1 Introduction -- 2.2 What is Fuzzy Logic? -- 2.3 Historical Background -- 2.4 Characteristics of Fuzzy Logic -- 2.5 Characteristics of Fuzzy Systems -- 2.6 Fuzzy Sets -- 2.6.1 Fuzzy Set -- 2.6.2 Support -- 2.6.3 Normal Fuzzy Set -- 2.6.4 a-Cut -- 2.6.5 Convex Fuzzy Set -- 2.6.6 Fuzzy Number -- 2.6.7 Quasi Fuzzy Number -- 2.6.8 Triangular Fuzzy Number -- 2.6.9 Trapezoidal Fuzzy Number -- 2.6.10 Subsethood -- 2.6.11 Equality of Fuzzy Sets -- 2.6.12 Empty Fuzzy Set -- 2.6.13 Universal Fuzzy Set -- 2.6.14 Fuzzy Point -- 2.7 Operations on Fuzzy Sets -- 2.7.1 Intersection -- 2.7.2 Union -- 2.7.3 Complement -- Question Bank -- References -- Chapter 3.Fuzzy Relations -- 3.1 Introduction -- 3.2 Fuzzy Relations -- 3.2.1 Classical N-Array Relation -- 3.2.2 Reflexivity -- 3.2.3 Anti-Reflexivity -- 3.2.4 Symmetricity -- 3.2.5 Anti-Symmetricity -- 3.2.6 Transitivity -- 3.2.7 Equivalence -- 3.2.8 Partial Order -- 3.2.9 Total Order -- 3.2.10 Binary Fuzzy Relation -- 3.3 Operations on Fuzzy Relations -- 3.3.1 Intersection -- 3.3.2 Union -- 3.3.3 Projection -- 3.3.4 Cartesian Product of two Fuzzy Sets -- 3.3.5 Shadow of Fuzzy Relation -- 3.3.6 Sup-Min Composition of Fuzzy Relations -- Question Bank -- References -- Chapter 4. Fuzzy Implications -- 4.1 Introduction -- 4.2 Fuzzy Implications -- 4.3 Modifiers -- 4.3.1 Linguistic Variables -- 4.3.2 the Linguistic Variable Truth -- Question Bank -- References -- Chapter 5. The Theory of Approximate Reasoning -- 5.1 Introduction -- 5.2 Translation Rules -- 5.2.1 Entailment Rule -- 5.2.2 Conjunction Rule -- 5.2.3 Disjunction Rule -- 5.2.4 Projection Rule.

5.2.5 Negation Rule -- 5.2.6 Compositional Rule of Inference -- 5.3 Rational Properties -- 5.3.1 Basic Property -- 5.3.2 Total Indeterminance -- 5.3.3 Subset -- 5.3.4 Superset -- Question Bank -- References -- Chapter 6. Fuzzy Rule-Based Systems -- 6.1 Introduction -- 6.2 Triangular Norm -- 6.3 Triangular Conorm -- 6.4 t-Norm-Based Intersection -- 6.5 t-Conorm-Based Union -- 6.6 Averaging Operators -- 6.6.1 An Averaging Operator is a Function -- 6.6.2 Ordered Weighted Averaging -- 6.7 Measure of Dispersion or Entropy of an Owa Vector -- 6.8 Mamdani System -- 6.9 Larsen System -- 6.10 Defuzzification -- Question Bank -- References -- Chapter 7. Fuzzy Reasoning Schemes -- 7.1 Introduction -- 7.2 Fuzzy Rule-Base System -- 7.3 Inference Mechanisms in Fuzzy Rule-Base Systems -- 7.3.1 Mamdani Inference Mechanism -- 7.3.2 Tsukamoto Inference Mechanism -- 7.3.3 Sugeno Inference Mechanism -- 7.3.4 Larsen Inference Mechanism -- 7.3.5 Simplified Fuzzy Reasoning -- Question Bank -- References -- Chapter 8. Fuzyy Logic Controllers -- 8.1 Introduction -- 8.2 Basic Feedback Control System -- 8.3 Fuzzy Logic Controller -- 8.3.1 Two-Input-Single-Output (TISO) Fuzzy Systems -- 8.3.2 Mamdani Type of Fuzzy Logic Control -- 8.3.3 Fuzzy Logic Control Systems -- 8.4 Defuzzification Methods -- 8.4.1 Center-of-Area/Gravity -- 8.4.2 First-of-Maxima -- 8.4.3 Middle-of-Maxima -- 8.4.4 Max-Criterion -- 8.4.5 Height Defuzzification -- 8.5 Effective of Fuzzy Logic Control Systems -- Question Bank -- References -- Chapter 9. Fuzzy Logic Applications -- 9.1 Why Use Fuzzy Logic? -- 9.2 Applications of Fuzzy Logic -- 9.3 When Not to use Fuzzy Logic? -- 9.4 Fuzzy Logic Model for Prevention of Road Accidents -- 9.4.1 Traffic Accidents and Traffic Safety -- 9.4.2 Fuzzy Logic Approach -- 9.4.3 Application -- 9.4.4 Membership Functions -- 9.4.5 Rule Base -- 9.4.6 Output.

9.4.7 Conclusions -- 9.5 Fuzzy Logic Model to Control Room Temperature -- 9.5.1 The Mechanics of Fuzzy Logic -- 9.5.2 Fuzzification -- 9.5.3 Rule Application -- 9.5.4 Defuzzification -- 9.5.5 Conclusions -- 9.6 Fuzzy Logic Model for Grading of Apples -- 9.6.1 Apple Defects Used in the Study -- 9.6.2 Materials and Methods -- 9.6.3 Application of Fuzzy Logic -- 9.6.4 Fuzzy Rules -- 9.6.5 Determination of Membership Functions -- 9.6.6 Defuzzification -- 9.6.7 Results and Discussion -- 9.6.8 Conclusion -- 9.7 An Introductory Example: Fuzzy V/S Non-Fuzzy -- 9.7.1 The Non-Fuzzy Approach -- 9.7.2 The Fuzzy Approach -- 9.7.3 Some Observations -- Question Bank -- References -- Chapter 10. Neural Networks Fundamentals -- 10.1 Introduction -- 10.2 Biological Neural Network -- 10.3 A Framework for Distributed Representation -- 10.3.1 Processing Units -- 10.3.2 Connections Between Units -- 10.3.3 Activation and Output Rules -- 10.4 Network Topologies -- 10.5 Training of Artificial Neural Networks -- 10.5.1 Paradigms of Learning -- 10.5.2 Modifying Patterns of Connectivity -- 10.6 Notation and Terminology -- 10.6.1 Notation -- 10.6.2 Terminology -- Question Bank -- References -- Chapter 11. Perceptron and Adaline -- 11.1 Introduction -- 11.2 Networks with Threshold Activation Functions -- 11.3 Perceptron Learning Rule and Convergence Theorem -- 11.3.1 Perceptron Learning Rule -- 11.3.2 Convergence Theorem -- 11.4 Adaptive Linear element (Adaline) -- 11.5 The Delta Rule -- 11.6 Exclusive-or Problem -- 11.7 Multi-Layer Perceptrons can do Everything -- Question Bank -- References -- Chapter 12. Back-Propagation -- 12.1 Introduction -- 12.2 Multi-Layer Feed-Forward Networks -- 12.3 The Generalised Delta Rule -- 12.3.1 Understanding Back-Propagation -- 12.4 Working with Back-Propagation -- 12.4.1 Weight Adjustment with Sigmoid Activation Function.

12.4.2 Learning Rate and Momentum -- 12.4.3 Learning Per Pattern -- 12.5 Other Activation Functions -- 12.6 Deficiencies of Back- Propagation -- 12.6.1 Network Paralysis -- 12.6.2 Local Minima -- 12.7 Advanced Algorithms -- 12.8 How Good are Multi-Layer Feed-Forward Networks? -- 12.8.1 The Effect of the Number of Learning Samples -- 12.8.2 The Effect of the Number of Hidden Units -- 12.9 Applications -- Question Bank -- References -- Chapter 13. Recurrent Networks -- 13.1 Introduction -- 13.2 The Generalized Delta-Rule in Recurrent Networks -- 13.2.1 The Jordan Network -- 13.2.2 The Elman Network -- 13.2.3 Back-Propagation in Fully Recurrent Networks -- 13.3 The Hopfield Network -- 13.3.1 Description -- 13.3.2 Hopfield Network as Associative Memory -- 13.3.3 Neurons with Graded Response -- 13.3.4 Hopfield Networks for Optimization Problems -- 13.4 Boltzmann Machines -- Question Bank -- References -- Chapter 14. Self-Organizing Networks -- 14.1 Introduction -- 14.2 Competitive Learning -- 14.2.1 Clustering -- 14.2.2 Vector Quantisation -- 14.2.3 Counter Propagation -- 14.2.4 Learning Vector Quantisation -- 14.3 Kohonen Network -- 14.4 Principal Component Networks -- 14.4.1 Normalized Hebbian Rule -- 14.4.2 Principal Component Extractor -- 14.4.3 More Eigenvectors -- 14.5 Adaptive Resonance Theory -- 14.5.1 Background: Adaptive Resonance Theory -- 14.5.2 ART 1: The Simplified Neural Network Model -- 14.5.3 Operation -- 14.5.4 ART 1: The Original Model -- 14.5.5 Normalization of the Original Model -- 14.5.6 Contrast Enhancement -- Question Bank -- References -- Chapter 15. Reinforcement Learning -- 15.1 Introduction -- 15.2 The Critic -- 15.3 The Controller Network -- 15.4 Barto's Approach: The ASE-ACE Combination -- 15.4.1 Associative Search -- 15.4.2 Adaptive Critic -- 15.4.3 The Cart-Pole System -- 15.5 Reinforcement Learning Versus Optimal Control.

Question Bank -- References -- Chapter 16. Neural Networks Applications -- 16.1 Introduction -- 16.2 Robot Control -- 16.2.1 Forward Kinematics -- 16.2.2 Inverse Kinematics -- 16.2.3 Dynamics -- 16.2.4 Trajectory Generation -- 16.2.5 End-Effector Positioning -- 16.2.5a Involvement of Neural Networks -- 16.2.6 Camera-Robot Coordination in Function Approximation -- 16.2.6a Approach-1: Feed-Forward Networks -- 16.2.6b Approach 2: Topology Conserving Maps -- 16.2.7 Robot Arm Dynamics -- 16.3 Detection of Tool Breakage in Milling Operations -- 16.3.1 Unsupervised Adaptive Resonance Theory (ART) Neural Networks -- 16.3.2 Results and Discussion -- Question Bank -- References -- Chapter 17 Hybrid Fuzzy Neural Networks -- 17.1 Introduction -- 17.2 Hybrid Systems -- 17.2.1 Sequential Hybrid Systems -- 17.2.2 Auxiliary Hybrid Systems -- 17.2.3 Embedded Hybrid Systems -- 17.3 Fuzzy Logic in Learning Algorithms -- 17.4 Fuzzy Neurons -- 17.5 Neural Networks as Pre-Processors or Post-Processors -- 17.6 Neural Networks as Tuners of Fuzzy Logic Systems -- 17.7 Advantages and Drawbacks of Neurofuzzy Systems -- 17.8 Commitee of Networks -- 17.9 FNN Architecture Based on Back Propagation -- 17.9.1 Strong L-R Representation of Fuzzy Numbers -- 17.9.2 Simulation -- 17.10 Adaptive Neuro-Fuzzy Inference System (ANFIS) -- 17.101 ANFIS Structure -- Question Bank -- References -- Chapter 18. Hybrid Fuzzy Neural Networks Applications -- 18.1 Introduction -- 18.2 Tool Breakage Monitoring System for End Milling -- 18.2.1 Methodology: Force Signals in the End Milling Cutting Process -- 18.2.2 Neural Networks -- 18.2.3 Experimental Design and System Development Experimental Design -- 18.2.4 Neural Network-BP System Development -- 18.2.5 Finding and Conclusions -- 18.3 Control of Combustion -- 18.3.1 Adaptive Neuro-Fuzzy Inference System -- 18.3.2 Learning Method of ANFIS.

18.3.3 Model of Combustion.
Abstract:
About the Book: The primary purpose of this book is to provide the student with a comprehensive knowledge of basic concepts of fuzzy logic and neural networks. The hybridization of fuzzy logic and neural networks is also included. No previous knowledge of fuzzy logic and neural networks is required. Fuzzy logic and neural networks have been discussed in detail through illustrative examples, methods and generic applications. Extensive and carefully selected references is an invaluable resource for further study of fuzzy logic and neural networks. Each chapter is followed by a question bank which is intended to help in the preparation for external examination. This book consists of 125 illustrations. Contents: Introduction Part I: Fuzzy Logic Fuzzy Sets and Fuzzy Logic Fuzzy Relations Fuzzy Implications The Theory of Approximate Reasoning Fuzzy Rule-Based Systems Fuzzy Reasoning Schemes Fuzzy Logic Controllers Fuzzy Logic Applications Part II: Neural Networks Fundamentals Perceptron and Adaline Back-Propagation Recurrent Networks Self-Organising Networks Reinforcement Learning Neural Networks Applications Part III: Hybrid Fuzzy Neural Networks Hybrid Fuzzy Neural Networks Hybrid Fuzzy Neural Networks Applications.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: