Cover image for Metaheuristic Applications in Structures and Infrastructures.
Metaheuristic Applications in Structures and Infrastructures.
Title:
Metaheuristic Applications in Structures and Infrastructures.
Author:
Gandomi, Amir Hossein.
ISBN:
9780123983794
Personal Author:
Physical Description:
1 online resource (577 pages)
Contents:
Front Cover -- Metaheuristic Applications in Structures and Infrastructures -- Copyright Page -- Contents -- List of Contributors -- 1 Metaheuristic Algorithms in Modeling and Optimization -- 1.1 Introduction -- 1.2 Metaheuristic Algorithms -- 1.2.1 Characteristics of Metaheuristics -- 1.2.2 No Free Lunch Theorems -- 1.3 Metaheuristic Algorithms in Modeling -- 1.3.1 Artificial Neural Networks -- 1.3.1.1 Multilayer Perceptron Network -- 1.3.1.2 Radial Basis Function -- 1.3.2 Genetic Programming -- 1.3.2.1 Linear-Based GP -- 1.3.2.1.1 Linear Genetic Programming -- 1.3.2.1.2 Gene Expression Programming -- 1.3.2.1.3 Multiexpression Programming -- 1.3.3 Fuzzy Logic -- 1.3.4 Support Vector Machines -- 1.4 Metaheuristic Algorithms in Optimization -- 1.4.1 Evolutionary Algorithms -- 1.4.1.1 Genetic Algorithm -- 1.4.1.2 Differential Evolution -- 1.4.1.3 Harmony Search -- 1.4.2 Swarm-Intelligence-Based Algorithms -- 1.4.2.1 Particle Swarm Optimization -- 1.4.2.2 Ant Colony Optimization -- 1.4.2.3 Bee Algorithms -- 1.4.2.4 Firefly Algorithm -- 1.4.2.5 Cuckoo Search -- 1.4.2.6 Bat Algorithm -- 1.4.2.7 Charged System Search -- 1.4.2.8 Krill Herd -- 1.5 Challenges in Metaheuristics -- References -- 2 A Review on Traditional and Modern Structural Optimization: Problems and Techniques -- 2.1 Optimization Problems -- 2.2 Optimization Techniques -- 2.3 Optimization History -- 2.4 Structural Optimization -- 2.4.1 General Concept -- 2.4.2 Major Advances in Structural Optimization -- 2.4.3 OC Methods -- 2.4.4 Reliability-Based Optimization Approach -- 2.4.5 Fuzzy Optimization -- 2.5 Metaheuristic Optimization Techniques -- 2.5.1 Genetic Algorithm -- 2.5.2 Simulated Annealing -- 2.5.3 Tabu Search -- 2.5.4 Ant Colony Optimization -- 2.5.5 Particle Swarm Optimization -- 2.5.6 Harmony Search -- 2.5.7 Big Bang-Big Crunch -- 2.5.8 Firefly Algorithm -- 2.5.9 Cuckoo Search.

2.5.10 Other Metaheuristics -- References -- 3 Particle Swarm Optimization in Civil Infrastructure Systems: State-of-the-Art Review -- 3.1 Introduction -- 3.2 Particle Swarm Optimization -- 3.3 Structural Engineering -- 3.3.1 Shape and Size Optimization Problems in Structural Design -- 3.3.2 Structural Condition Assessment and Health Monitoring -- 3.3.3 Structural Material Characterization and Modeling -- 3.3.4 Other PSO Applications in Structural Engineering -- 3.4 Transportation and Traffic Engineering -- 3.4.1 Transportation Network Design -- 3.4.2 Traffic Flow Forecasting -- 3.4.3 Traffic Control -- 3.4.4 Traffic Accident Forecasting -- 3.4.5 Vehicle Routing Problem -- 3.4.6 Other PSO Application in Transportation and Traffic Engineering -- 3.5 Hydraulics and Hydrology -- 3.5.1 River Stage Prediction -- 3.5.2 Design Optimization of Water/Wastewater Distribution Networks -- 3.5.3 Reservoir Operation Problems -- 3.5.4 Parameter Estimation/Calibration of Hydrological Models -- 3.5.5 Other PSO Applications in Hydraulics and Hydrology -- 3.6 Construction Engineering -- 3.6.1 Construction Planning and Management -- 3.6.2 Construction Litigation -- 3.6.3 Construction Cost Estimation and Prediction -- 3.6.4 Other PSO Applications in Construction Engineering -- 3.7 Geotechnical Engineering -- 3.7.1 Inverse Parameter Identification and Geotechnical Model Calibration -- 3.7.2 Slope Stability Analysis -- 3.8 Pavement Engineering -- 3.9 PSO Applications in Other Civil Engineering Fields -- 3.10 Concluding Remarks -- References -- One: Structural Design -- 4 Evolution Strategies-Based Metaheuristics in Structural Design Optimization -- 4.1 Introduction -- 4.2 Literature Survey -- 4.3 The Structural Optimization Problem -- 4.3.1 Sizing Optimization -- 4.3.2 Shape Optimization -- 4.3.3 Topology Optimization -- 4.4 Problem Formulations.

4.4.1 Single-Objective Structural Optimization -- 4.4.2 Multiobjective Structural Optimization -- 4.4.2.1 Criteria and Conflict -- 4.4.2.2 Formulation of a Multiple Objective Optimization Problem -- 4.5 Metaheuristics -- 4.5.1 Solving the Single-Objective Optimization Problems -- 4.5.1.1 Evolution Strategies -- 4.5.1.2 Covariance Matrix Adaptation -- 4.5.1.2.1 Generation of Offsprings -- 4.5.1.2.2 New Mean Value Vector -- 4.5.1.2.3 Global Step Size -- 4.5.1.2.4 Covariance Matrix Update -- 4.5.1.3 Elitist CMA -- 4.5.2 Solving the Multiobjective Optimization Problems -- 4.5.2.1 Nondominated Sorting Evolution Strategies -- 4.5.2.2 Strength Pareto Evolution Strategies -- 4.5.2.3 Multiobjective Elitist Covariance Matrix Adaptation -- 4.6 39-Bar Truss-Test Example -- 4.7 Conclusions -- References -- 5 Multidisciplinary Design and Optimization Methods -- 5.1 Introduction -- 5.2 Coupled Multidisciplinary System -- 5.3 Classifications of MDO Formulations -- 5.4 Single-Level Optimization -- 5.4.1 Multiple-Discipline Feasible -- 5.4.2 All-At-Once Method -- 5.4.3 Individual-Discipline Feasible -- 5.4.4 Comparative Characteristics of Single-Level Optimization -- 5.5 Multilevel Optimization -- 5.5.1 Concurrent Subspace Optimization -- 5.5.2 Bilevel Integrated System Synthesis -- 5.5.3 Collaborative Optimization -- 5.5.3.1 Decomposition of Coupled Systems into CO -- 5.6 Optimization Algorithms -- 5.6.1 Direct Search Methods -- 5.6.2 Gradient-Based Optimization Techniques -- 5.6.3 Metaheuristic Optimization Techniques -- 5.7 High-Fidelity MDO Using Metaheuristic Algorithms -- 5.8 Test Problem -- 5.8.1 Conventional Optimization Problem Formulation -- 5.8.2 CO Formulation -- 5.8.3 Discipline-Level Optimization -- 5.8.4 Implementation of Multi-Fidelity Modeling Methodology in CO -- 5.8.5 System-Level Optimization Using MLSM.

5.8.6 Evaluation of Predictive Capabilities of the Metamodels -- 5.8.7 Optimization Algorithms -- 5.9 Conclusions -- References -- 6 Cost Optimization of Column Layout Design of Reinforced Concrete Buildings -- 6.1 Introduction -- 6.2 Statement of the Problem -- 6.3 Formulation in a New Space -- 6.3.1 Slabs -- 6.3.2 Beams -- 6.3.3 Columns -- 6.4 The Optimization Problem -- 6.5 ACO Algorithm for Column Layout Optimization -- 6.5.1 Numerical Example -- 6.6 Conclusions -- References -- 7 Layout Design of Beam-Slab Floors by a Genetic Algorithm -- 7.1 Introduction -- 7.1.1 Heuristic Versus Algorithmic Design Tasks -- 7.1.2 Conversion of Heuristic to Algorithmic Tasks -- 7.1.3 Beam-Slab Layout Design as an Optimization Problem -- 7.2 A Representation of Beam-Slab Layouts -- 7.2.1 A Representation of Beam Locations -- 7.2.2 Elimination of Invalid Beams -- 7.3 A Representative Optimization Problem -- 7.4 A GA for Beam-Slab Layout Design -- 7.4.1 Problem Formulation for a GA -- 7.4.2 Adaptive Penalty and Elitism -- 7.4.3 Algorithm -- 7.5 Examples -- 7.6 Future Challenges -- References -- 8 Optimum Design of Skeletal Structures via Big Bang-Big Crunch Algorithm -- 8.1 Introduction -- 8.2 Statement of the Optimization Design Problem -- 8.2.1 Constraint Conditions for Truss Structures -- 8.2.2 Constraint Conditions for Steel Frames -- 8.2.3 Constraints Handling Approach -- 8.3 Review of the Utilized Methods -- 8.3.1 BB-BC Algorithm -- 8.3.2 Particle Swarm Optimization -- 8.3.3 Sub-Optimization Mechanism -- 8.4 The Proposed Method -- 8.4.1 A Continuous Algorithm -- 8.4.2 A Discrete Algorithm -- 8.5 Design Examples -- 8.5.1 A Square on Diagonal Double-Layer Grid -- 8.5.2 A 26-Story-Tower Spatial Truss -- 8.5.3 A 354-Bar Braced Dome Truss -- 8.5.4 A 582-Bar Tower Truss -- 8.5.5 A 3-Bay 15-Story Frame -- 8.5.6 A 3-Bay 24-Story Frame -- 8.6 Concluding Remarks.

References -- 9 Truss Weight Minimization Using Hybrid Harmony Search and Big Bang-Big Crunch Algorithms -- 9.1 Introduction -- 9.2 Statement of the Weight Minimization Problem for a Truss Structure -- 9.3 Harmony Search -- 9.3.1 Generation, Acceptance/Rejection, and Adjustment of a New Harmony -- 9.3.2 Evaluation of the New Trial Design -- 9.3.3 One-Dimensional SA-Type Probabilistic Search -- 9.3.4 Update of the Harmony Memory -- 9.3.5 Termination Criterion -- 9.4 Big Bang-Big Crunch -- 9.4.1 Generation of the Initial Population and Determination of the Center of Mass -- 9.4.2 Evaluation of the Characteristics of the Center of Mass -- 9.4.3 Perturbation of Design Variables -- 9.4.4 Evaluate the Quality of the New Trial Design, Eventually Use Improvement Routines, and Finally Perform a New Explosion -- 9.5 Simulated Annealing -- 9.6 Description of Test Problems -- 9.6.1 Planar 200-Bar Truss Structure Subject to Five Independent Loading Conditions -- 9.6.2 Spatial 3586-Bar Truss Tower -- 9.6.3 Implementation Details -- 9.7 Results of Sensitivity Analysis -- 9.8 Results of the Large-Scale Optimization Problem -- 9.9 Summary and Conclusions -- References -- 10 Graph Theory in Evolutionary Truss Design Optimization -- 10.1 Introduction -- 10.2 Truss Design -- 10.2.1 Equilibrium Equations -- 10.2.2 Formulation of the Optimization Problem -- 10.2.3 Optimization Methods -- 10.3 Graph Theory -- 10.3.1 Basic Terminology -- 10.3.2 Finite Element Representation -- 10.3.3 Weighted Adjacency Matrix -- 10.4 Evolutionary Algorithm -- 10.4.1 Outline -- 10.4.2 Representation -- 10.4.3 Initial Population -- 10.4.4 Kinematic Stability -- 10.4.5 Evaluation -- 10.4.6 Selection -- 10.4.7 Crossover -- 10.4.8 Mutation -- 10.4.9 Replacement -- 10.5 Application -- 10.5.1 Free-Form Tower -- 10.5.2 Bridge Structure -- 10.5.3 Double-Layer Truss Grid -- 10.6 Conclusions.

References.
Abstract:
Due to an ever-decreasing supply in raw materials and stringent constraints on conventional energy sources, demand for lightweight, efficient and low-cost structures has become crucially important in modern engineering design. This requires engineers to search for optimal and robust design options to address design problems that are commonly large in scale and highly nonlinear, making finding solutions challenging. In the past two decades, metaheuristic algorithms have shown promising power, efficiency and versatility in solving these difficult optimization problems. This book examines the latest developments of metaheuristics and their applications in structural engineering, construction engineering and earthquake engineering, offering practical case studies as examples to demonstrate real-world applications. Topics cover a range of areas within engineering, including big bang-big crunch approach, genetic algorithms, genetic programming, harmony search, swarm intelligence and some other metaheuristic methods. Case studies include structural identification, vibration analysis and control, topology optimization, transport infrastructure design, design of reinforced concrete, performance-based design of structures and smart pavement management. With its wide range of everyday problems and solutions, Metaheursitic Applications in Structures and Infrastructures can serve as a supplementary text for design courses and computation in engineering as well as a reference for researchers and engineers in metaheuristics, optimization in civil engineering and computational intelligence. Review of the latest development of metaheuristics in engineering. Detailed algorithm descriptions with focus on practical implementation. Uses practical case studies as examples and applications.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: