Cover image for LTE-Advanced and Next Generation Wireless Networks : Channel Modelling and Propagation.
LTE-Advanced and Next Generation Wireless Networks : Channel Modelling and Propagation.
Title:
LTE-Advanced and Next Generation Wireless Networks : Channel Modelling and Propagation.
Author:
de la Roche, Guillaume.
ISBN:
9781118411001
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (567 pages)
Contents:
LTE-Advanced and Next Generation Wireless Networks -- Contents -- About the Editors -- List of Contributors -- Preface -- Acknowledgements -- List of Acronyms -- Part I Background -- Chapter 1 Enabling Technologies for 3GPP LTE-Advanced Networks -- 1.1 Introduction -- 1.2 General IMT-Advanced Features and Requirements -- 1.2.1 Services -- 1.2.2 Spectrum -- 1.2.3 Technical Performance -- 1.3 Long Term Evolution Advanced Requirements -- 1.3.1 Requirements Related with Capacity -- 1.3.2 System Performance -- 1.3.3 Deployment -- 1.4 Long Term Evolution Advanced Enabling Technologies -- 1.4.1 Carrier Aggregation -- 1.4.2 Advanced MIMO Techniques -- 1.4.3 Coordinated Multipoint Transmission or Reception -- 1.4.4 Relaying -- 1.4.5 Enhancements for Home eNodeBs -- 1.4.6 Machine-Type Communications -- 1.4.7 Self-Optimizing Networks (SON) -- 1.4.8 Improvements to Latency in the Control and User Plane -- 1.5 Summary -- References -- Chapter 2 Propagation and Channel Modeling Principles -- 2.1 Propagation Principles -- 2.1.1 Free-Space Propagation and Antenna Gain -- 2.1.2 Reflection and Transmission -- 2.1.3 Diffraction -- 2.1.4 Scattering -- 2.1.5 Waveguiding -- 2.1.6 Multipath Propagation -- 2.2 Deterministic Channel Descriptions -- 2.2.1 Time Variant Impulse Response -- 2.2.2 Directional Description and MIMO Matrix -- 2.2.3 Polarization -- 2.2.4 Ultrawideband Description -- 2.3 Stochastic Channel Description -- 2.3.1 Pathloss and Shadowing -- 2.3.2 Small-Scale Fading -- 2.3.3 WSSUS -- 2.3.4 Extended WSSUS -- 2.4 Channel Modeling Methods -- 2.4.1 Deterministic Modeling -- 2.4.2 Modeling Hierarchies -- 2.4.3 Clustering -- 2.4.4 Stochastic Modeling -- 2.4.5 Geometry-Based Stochastic Models -- 2.4.6 Diffuse Multipath Components -- 2.4.7 Multi-Link Stochastic Models -- References -- Part II Radio Channels.

Chapter 3 Indoor Channels -- 3.1 Introduction -- 3.2 Indoor Large Scale Fading -- 3.2.1 Indoor Large Scale Models -- 3.2.2 Summary of Indoor Large Scale Characteristics -- 3.2.3 Important Factors for Indoor Propagation -- 3.3 Indoor Small Scale Fading -- 3.3.1 Geometry-Based Stochastic Channel Model -- 3.3.2 Statistical Characteristics in Delay Domain -- 3.3.3 Statistical Parameter in Angular Domain -- 3.3.4 Cross-Polarization Discrimination (XPD) for Indoor Scenario -- 3.3.5 3-D Modeling for Indoor MIMO Channel -- 3.3.6 Impact of Elevation Angular Distribution -- References -- Chapter 4 Outdoor Channels -- 4.1 Introduction -- 4.2 Reference Channel Model -- 4.3 Small Scale Variations -- 4.3.1 First Order Statistical Characterization -- 4.3.2 Second Order Statistical Characterization -- 4.4 Path Loss and Large Scale Variations -- 4.5 Summary -- Acknowledgements -- References -- Chapter 5 Outdoor-Indoor Channel -- 5.1 Introduction -- 5.2 Modelling Principles -- 5.3 Empirical Propagation Models -- 5.3.1 Path Loss Exponent Model -- 5.3.2 Path Loss Exponent Model with Mean Building Penetration Loss -- 5.3.3 Partition-Based Outdoor-to-Indoor Model -- 5.3.4 Path Loss Exponent Model with Building Penetration Loss -- 5.3.5 COST 231 Building Penetration Loss Model -- 5.3.6 Excess Path Loss Building Penetration Models -- 5.3.7 Extended COST 231 WI Building Penetration at the LOS Condition -- 5.3.8 WINNER II Outdoor-to-Indoor Path Loss Models -- 5.4 Deterministic Models -- 5.4.1 FDTD -- 5.4.2 Ray-Based Methods -- 5.4.3 Intelligent Ray Launching Algorithm (IRLA) -- 5.5 Hybrid Models -- 5.5.1 Antenna Radiation Pattern -- 5.5.2 Calibration -- 5.5.3 IRLA Case Study: INSA -- 5.5.4 IRLA Case Study: Xinghai -- Acknowledgements -- References -- Chapter 6 Vehicular Channels -- 6.1 Introduction -- 6.2 Radio Channel Measurements.

6.2.1 Channel Sounders -- 6.2.2 Vehicular Antennas -- 6.2.3 Vehicular Measurement Campaigns -- 6.3 Vehicular Channel Characterization -- 6.3.1 Time-Variability of the Channel -- 6.3.2 Time-Varying Vehicular Channel Parameters -- 6.3.3 Empirical Results -- 6.4 Channel Models for Vehicular Communications -- 6.4.1 Channel Modeling Techniques -- 6.4.2 Geometry-Based Stochastic Channel Modeling -- 6.4.3 Low-Complexity Geometry-Based Stochastic Channel Model Simulation -- 6.5 New Vehicular Communication Techniques -- 6.5.1 OFDM Physical (PHY) and Medium Access -- 6.5.2 Relaying Techniques -- 6.5.3 Cooperative Coding and Distributed Sensing -- 6.5.4 Outlook -- References -- Chapter 7 Multi-User MIMO Channels -- 7.1 Introduction -- 7.2 Multi-User MIMO Measurements -- 7.2.1 General Information About Measurements -- 7.2.2 Measurement Techniques -- 7.2.3 Phase Noise -- 7.2.4 Measurement Antennas -- 7.2.5 Measurement Campaigns -- 7.3 Multi-User Channel Characterization -- 7.4 Multi-User Channel Models -- 7.4.1 Analytical Model -- 7.4.2 General Cluster Model -- 7.4.3 Particular Implementation of Cluster Models -- References -- Chapter 8 Wideband Channels -- 8.1 Large Scale Channel Properties -- 8.1.1 Path Gain-Range Dependency -- 8.1.2 Path Gain-Frequency Dependency -- 8.2 Impulse Response of UWB Channel -- 8.2.1 Impulse Response According to IEEE802.15.4a -- 8.2.2 Impact of Antenna Impulse Response in Free Space -- 8.2.3 Manifestation of Antenna Impulse Response in Realistic Indoor Channels -- 8.2.4 New Channel Model For UWB -- 8.2.5 UWB Channel Impulse Response-Simplified Model for Practical Use -- 8.2.6 UWB Channel Impulse Response-Conclusion -- 8.3 Frequency Selective Fading in UWB Channels -- 8.3.1 Fade Depth Scaling -- 8.3.2 Probability Distribution Function of Fading -- 8.4 Multiple Antenna Techniques.

8.4.1 Wideband Array Descriptors -- 8.4.2 Antenna Arrays-UWB OFDM Systems -- 8.5 Implications for LTE-A -- References -- Chapter 9 Wireless Body Area Network Channels -- 9.1 Introduction -- 9.2 Wearable Antennas -- 9.3 Analysis of Antennas Close to Human Skin -- 9.3.1 Complex Permittivity and Equivalent Conductivity of Medium -- 9.3.2 Properties of Human Body Tissue -- 9.3.3 Energy Loss in Biological Tissue -- 9.3.4 Body Effects on the Q Factor and Bandwidth of Wearable Antennas -- 9.4 A Survey of Popular On-Body Propagation Models -- 9.5 Antenna Implants-Possible Future Trends -- 9.6 Summary -- References -- Part III Simulation and Performance -- Chapter 10 Ray-Tracing Modeling -- 10.1 Introduction -- 10.2 Main Physical Phenomena Involved in Propagation -- 10.2.1 Basic Terms and Principles -- 10.2.2 Free Space Propagation -- 10.2.3 Reflection and Transmission -- 10.2.4 Diffraction -- 10.2.5 Scattering -- 10.3 Incorporating the Influence of Vegetation -- 10.3.1 Modeling Diffraction Over the Tree Canopy -- 10.3.2 Modeling Tree Shadowing -- 10.3.3 Modeling Diffuse Scattering from Trees -- 10.4 Ray-Tracing Methods -- 10.4.1 Modeling of the Environment -- 10.4.2 Geometric Computation of the Ray Trajectories -- 10.4.3 Direct Method or Ray-Launching -- 10.4.4 Image Method Ray-Tracing -- 10.4.5 Acceleration Techniques -- 10.4.6 Hybrid Techniques -- 10.4.7 Determination of the Electromagnetic Field Strength and Space-Time Outputs -- 10.4.8 Extension to Ultra-Wideband (UWB) Channel Modeling -- References -- Chapter 11 Finite-Difference Modeling -- 11.1 Introduction -- 11.2 Models for Solving Maxwell's Equations -- 11.2.1 FDTD -- 11.2.2 ParFlow -- 11.3 Practical Use of FD Methods -- 11.3.1 Comparison with Ray Tracing -- 11.3.2 Complexity Reduction -- 11.3.3 Calibration -- 11.3.4 Antenna Pattern Effects -- 11.3.5 3D Approximation.

11.4 Results -- 11.4.1 Path Loss Prediction -- 11.4.2 Fading Prediction -- 11.5 Perspectives for Finite Difference Models -- 11.5.1 Extension to 3D Models -- 11.5.2 Combination with Ray Tracing Models -- 11.5.3 Application to Wideband Channel Modeling -- 11.6 Summary and Perspectives -- Acknowledgements -- References -- Chapter 12 Propagation Models for Wireless Network Planning -- 12.1 Geographic Data for RNP -- 12.1.1 Terminology -- 12.1.2 Production Techniques -- 12.1.3 Specific Details Required for the Propagation Modeling -- 12.1.4 Raster Multi-Resolution -- 12.1.5 Raster-Vector Multi-Resolution -- 12.2 Categorization of Propagation Models -- 12.2.1 Site-General Path Loss Models -- 12.2.2 Site-Specific Path Loss and Channel Models -- 12.3 Empirical Models -- 12.3.1 Lee's Model -- 12.3.2 Erceg's Model -- 12.4 Semi-Empirical Models for Macro Cells -- 12.4.1 A General Formula for Semi-Empirical Models for Macro Cells -- 12.4.2 COST231-Walfisch-Ikegami-Model -- 12.4.3 Other Models -- 12.5 Deterministic Models for Urban Areas -- 12.5.1 Waveguiding in Urban Areas -- 12.5.2 Transitions between Heterogeneous Environments -- 12.5.3 Penetration Inside Buildings -- 12.5.4 Main Principles of Operational Deterministic Models -- 12.5.5 Outdoor-to-Indoor Techniques -- 12.5.6 Calibration of Parameters -- 12.6 Accuracy of Propagation Models for RNP -- 12.6.1 Measurement Campaign -- 12.6.2 Tuning (aka Calibration) Process -- 12.6.3 Model Accuracy -- 12.7 Coverage Probability -- References -- Chapter 13 System-Level Simulations with the IMT-Advanced Channel Model -- 13.1 Introduction -- 13.2 IMT-Advanced Simulation Guidelines -- 13.2.1 General System-Level Evaluation Methodology -- 13.2.2 System-Level Performance Metrics -- 13.2.3 Test Environment and Deployment Scenario Configurations -- 13.2.4 Antenna Modeling.

13.3 The IMT-Advanced Channel Models.
Abstract:
LTE- A and Next Generation Wireless Networks: Channel Modeling and Performance describes recent advances in propagation and channel modeling necessary for simulating next generation wireless systems. Due to the radio spectrum scarcity, two fundamental changes are anticipated compared to the current status. Firstly, the strict reservation of a specific band for a unique standard could evolve toward a priority policy allowing the co-existence of secondary users in a band allocated to a primary system. Secondly, a huge increase of the number of cells is expected by combining outdoor base stations with smaller cells such as pico/femto cells and relays. This evolution is accompanied with the emergence of cognitive radio that becomes a reality in terminals together with the development of self-organization capabilities and distributed cooperative behaviors. The book is divided into three parts: Part I addresses the fundamentals (e.g. technologies, channel modeling principles etc.) Part II addresses propagation and modeling discussing topics such as indoor propagation, outdoor propagation, etc. Part III explores system performance and applications (e.g. MIMO Over-the-air testing, electromagnetic safety, etc).
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: