Cover image for Copper-Catalyzed Asymmetric Synthesis.
Copper-Catalyzed Asymmetric Synthesis.
Title:
Copper-Catalyzed Asymmetric Synthesis.
Author:
Alexakis, Alexandre.
ISBN:
9783527664603
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (472 pages)
Contents:
Copper-Catalyzed Asymmetric Synthesis -- Contents -- List of Contributors -- Introduction -- Chapter 1 The Primary Organometallic in Copper-Catalyzed Reactions -- 1.1 Scope and Introduction -- 1.2 Terminal Organometallics Sources Available -- 1.3 Coordination Motifs in Asymmetric Copper Chemistry -- 1.3.1 Classical Cuprate Structure and Accepted Modes of Reaction -- 1.3.1.1 Conjugate Addition -- 1.3.1.2 SN2 Allylation Reactions -- 1.3.2 Motifs in Copper-Main Group Bimetallics and Substrate Binding -- 1.4 Asymmetric Organolithium-Copper Reagents -- 1.5 Asymmetric Grignard-Copper Reagents -- 1.6 Asymmetric Organozinc-Copper Reagents -- 1.7 Asymmetric Organoboron-Copper Reagents -- 1.8 Asymmetric Organoaluminium-Copper Reagents -- 1.9 Asymmetric Silane and Stannane Copper-Promoted Reagents -- 1.10 Conclusions -- References -- Chapter 2 Copper-Catalyzed Asymmetric Conjugate Addition -- 2.1 Introduction -- 2.2 Conjugate Addition -- 2.2.1 The Nucleophile -- 2.2.2 The Copper Salt -- 2.2.3 The Ligand -- 2.2.4 Scope of Michael Acceptors -- 2.2.4.1 Enones -- 2.2.4.2 Enals -- 2.2.4.3 Nitroalkenes -- 2.2.4.4 α,β-Unsaturated Amide and Ester Derivatives -- 2.2.4.5 Other Michael Acceptors -- 2.2.5 Formation of All-Carbon Quaternary Stereocenters -- 2.3 Trapping of Enolates -- References -- Chapter 3 Copper-Catalyzed Asymmetric Conjugate Addition and Allylic Substitution of Organometallic Reagents to Extended Multiple-Bond Systems -- 3.1 Introduction -- 3.2 Copper-Catalyzed Asymmetric Conjugate Addition (ACA) to Polyconjugated Michael Acceptors -- 3.2.1 Background -- 3.2.2 1,6 Selectivity in ACA to Polyconjugated Systems -- 3.2.3 1,4 Selectivity in ACA to Polyconjugated Systems -- 3.3 Copper-Catalyzed Asymmetric Allylic Substitution on Extended Multiple-Bond Systems -- 3.3.1 Background.

3.3.2 Copper-Catalyzed Enantioselective Allylic Substitution on Extended Multiple-Bond Systems -- 3.4 Conclusion -- References -- Chapter 4 Asymmetric Allylic Alkylation -- 4.1 Introduction -- 4.2 Nucleophiles in Enantioselective Process Development -- 4.2.1 Grignard Nucleophiles -- 4.2.2 Diorganozinc Nucleophiles -- 4.2.3 Triorganoaluminium Nucleophiles -- 4.2.4 Organoboranes Nucleophiles -- 4.2.5 Organolithium Nucleophiles -- 4.3 Functionalized Substrates -- 4.3.1 Trisubstituted Substrates -- 4.3.2 Ester Derivatives -- 4.3.3 Heterofunctionalized Substrates -- 4.3.4 Vinylic Boronates and Silanes -- 4.3.5 Substrates Bearing Two Leaving Groups (1,4 or 1,1') -- 4.3.6 Enyne-Type Substrates -- 4.4 Desymmetrization of meso-Allylic Substrates -- 4.4.1 Polycyclic Hydrazines, Symmetric Allylic Epoxides, Oxabicyclic Alkenes -- 4.4.2 Cyclic Allylic Bis(Diethyl phosphates) -- 4.4.3 Miscellaneous Desymmetrization -- 4.5 Kinetic Resolution Processes -- 4.5.1 Allylic Epoxides and Aziridines, Oxabicyclic Alkenes, Bicyclic Oxazines -- 4.5.2 Stereodivergent Kinetic Resolution on Acyclic Allylic Halides -- 4.6 Direct Enantioconvergent Transformation -- 4.7 Conclusion and Perspectives -- References -- Chapter 5 Ring Opening of Epoxides and Related Systems -- 5.1 Introduction -- 5.2 Copper-Catalyzed Asymmetric Ring Opening of Epoxides with Amines -- 5.3 Copper-Catalyzed Asymmetric Ring Opening of Epoxides and Aziridines with Organometallic Reagents -- 5.3.1 Copper-Catalyzed Kinetic Resolution of Racemic Allylic Epoxides and Allylic Aziridines with Dialkylzincs -- 5.3.2 Copper-Catalyzed Enantioselective Desymmetrization of meso-Allylic Epoxides with Dialkylzincs.

5.3.3 Copper-Catalyzed Regiodivergent Kinetic Resolution of Racemic Allylic Epoxides with Dialkylzincs -- 5.3.4 Copper-Catalyzed Asymmetric Ring Opening of Racemic Strained Three-Membered Compounds with Organoaluminium and Grignard Reagents -- 5.4 Copper-Catalyzed Asymmetric Ring Opening of Heterobicyclic Systems with Organometallic Reagents -- 5.5 Conclusions -- References -- Chapter 6 Carbon-Boron and Carbon-Silicon Bond Formation -- 6.1 Introduction -- 6.2 C-B Bond Formation Reactions -- 6.2.1 Boron Reagents and Copper(I)-Boryl Species -- 6.2.2 Allylic C-B Couplings to Produce Allylboron Compounds and Related Reactions -- 6.2.3 â-Boration of á,â-Unsaturated Carbonyl Compounds -- 6.2.4 Hydroboration of Nonpolar Alkenes -- 6.3 C-Si Bond Formation Reactions -- 6.3.1 Allylic C-Si Coupling Producing Allylsilanes -- 6.3.2 β-Silylation of á,β-Unsaturated Carbonyl Compounds -- 6.4 Summary -- References -- Chapter 7 CuH in Asymmetric Reductions -- 7.1 Introduction -- 7.2 Asymmetric Conjugate Reductions -- 7.2.1 α,β-Unsaturated Sulfones -- 7.2.2 α,β-Unsaturated Nitriles and Nitroolefins -- 7.2.3 α,β-Unsaturated Ketones and Esters -- 7.3 Asymmetric 1,2-Additions -- 7.3.1 Aryl Ketones -- 7.3.2 Dialkyl Ketones -- 7.3.3 α,β-Unsaturated Ketones -- 7.4 Heterogeneous Catalysis -- 7.4.1 Charcoal -- 7.4.2 Nanocrystalline CuO -- 7.4.3 Cu-Al Hydrotalcite -- 7.4.4 Copper Ferrite Nanoparticles -- 7.5 Conclusions and Perspective -- References -- Chapter 8 Asymmetric Cyclopropanation and Aziridination Reactions -- 8.1 Introduction -- 8.2 Asymmetric Cyclopropanation -- 8.2.1 Intermolecular Cyclopropanation Using Metal Carbenes -- 8.2.1.1 Using Unsubstituted Copper Carbenes: Diazomethane -- 8.2.1.2 Using Copper Carbenes Bearing One Electron-Withdrawing Group.

8.2.1.3 Using Metal Carbenes Bearing Two Electron-Withdrawing Groups -- 8.2.1.4 Using Donor/Acceptor Copper Carbenes -- 8.2.2 Intramolecular Cyclopropanation Using Copper Carbenes -- 8.3 Asymmetric Aziridination -- 8.3.1 Intermolecular Aziridination Using Copper Nitrenes -- 8.3.1.1 Of Terminal Styrene Derivatives -- 8.3.1.2 Of â-Substituted Styrene Derivatives -- 8.3.1.3 Of Cyclic Styrene Derivatives -- 8.3.1.4 Of Cinnamate Derivatives -- 8.3.1.5 Of Chalcone Derivatives -- 8.3.1.6 Of Terminal Aliphatic Alkenes -- 8.3.2 Intramolecular Aziridination Using Copper Nitrenes -- 8.4 Conclusion -- References -- Chapter 9 Copper-Catalyzed Asymmetric Addition Reaction of Imines -- 9.1 Introduction -- 9.1.1 Asymmetric Alkylation of Imines with Organometallic Reagents -- 9.1.2 Possibility of Catalytic Reaction -- 9.2 Copper-Catalyzed Asymmetric Addition Reaction of Dialkylzinc to Imines -- 9.2.1 Addition to C=N Double Bonds of Imines -- 9.2.2 Conjugate Addition to α,β-Unsaturated Imines -- 9.3 Copper-Catalyzed Asymmetric Allylation, Arylation, and Alkynylation Reactions of Imines -- 9.3.1 Copper-Catalyzed Asymmetric Allylation of Imines -- 9.3.2 Copper-Catalyzed Asymmetric Arylation of Imines -- 9.3.3 Copper-Catalyzed Asymmetric Alkynylation of Imines -- 9.4 Copper as a Lewis Acid Catalyst for Asymmetric Reaction of Imines -- 9.4.1 Copper-Catalyzed Asymmetric Mannich-Type Reaction of Imines -- 9.4.2 Copper-Catalyzed Asymmetric Diels-Alder-type Reaction of Dienes with Imines -- 9.4.3 Copper-Catalyzed Asymmetric Henry Reaction of Imines -- 9.5 Conclusions -- References -- Chapter 10 Carbometallation Reactions -- 10.1 Introduction -- 10.2 Carbometallation of Cyclopropenes -- 10.2.1 Copper-Catalyzed Carbomagnesiation -- 10.2.2 Copper-Catalyzed Carbozincation -- 10.3 Carbometallation of Alkynes.

10.3.1 Copper-Catalyzed Carbometallation Followed by Zinc Homologation -- 10.3.2 Copper-Catalyzed Carbomagnesiation - Elimination Sequence -- 10.4 Summary -- Acknowledgments -- References -- Chapter 11 Chiral Copper Lewis Acids in Asymmetric Transformations -- 11.1 Introduction -- 11.2 Cycloadditions -- 11.2.1 Diels-Alder Cycloadditions -- 11.2.2 Hetero Diels-Alder Reactions -- 11.2.3 [3 + 2], [2 + 2], and [4 + 3] Cycloaddition Reactions -- 11.2.4 Nazarov Cyclization -- 11.3 Claisen Rearrangements -- 11.4 Ene Reactions -- 11.5 Nucleophilic Addition to C=O and C=N Double Bonds -- 11.5.1 Aldol Reactions -- 11.5.2 Mannich-Type Reactions -- 11.5.3 Nitroaldol/Nitro Mannich Reactions (Henry/Aza-Henry Reactions) -- 11.5.4 1,2-Addition-Type Friedel-Crafts Alkylation -- 11.6 Conjugate Additions -- 11.6.1 Mukaiyama Michael Reaction -- 11.6.2 Michael Addition to Enamides -- 11.6.3 Michael Addition of Carbon Nucleophiles -- 11.6.4 Aza-Michael Reaction -- 11.6.5 1,4-Addition-Type Friedel-Crafts Alkylation -- 11.7 α-Functionalization of Carbonyl Compounds -- 11.8 Kinetic Resolution -- 11.9 Asymmetric Desymmetrization -- 11.10 Free-Radical Reactions -- 11.11 Conclusions -- References -- Chapter 12 Mechanistic Aspects of Copper-Catalyzed Reactions -- 12.1 Introduction -- 12.2 Conjugate Addition -- 12.3 Allylic Alkylation and Substitution -- 12.4 Copper as Lewis Acid -- 12.5 1,2-Addition to Imines and Carbonyls -- 12.6 Copper Hydride -- 12.7 Cyclopropanation, Aziridination, and Allylic Oxidation -- References -- Chapter 13 NMR Spectroscopic Aspects -- 13.1 Introduction -- 13.2 Copper Complexes with Phosphoramidite Ligands -- 13.2.1 Precatalytic Copper Complexes -- 13.2.1.1 Structure Determination -- 13.2.1.2 Temperature Dependence -- 13.2.1.3 Ligand-Specific Aggregation Trends.

13.2.2 Phosphoramidite Trialkylaluminium Interactions.
Abstract:
This book reflects the increasing interest among the chemical synthetic community in the area of asymmetric copper-catalyzed reactions, and introduces readers to the latest, most significant developments in the field. The contents are organized according to reaction type and cover mechanistic and spectroscopic aspects as well as applications in the synthesis of natural products. A whole chapter is devoted to understanding how primary organometallics interact with copper to provide selective catalysts for allylic substitution and conjugate addition, both of which are treated in separate chapters. Another is devoted to the variety of substrates and experimental protocols, while an entire chapter covers the use on non-carbon nucleophiles. Other chapters deal with less-known reactions, such as carbometallation or the additions to imines and related systems, while the more established reactions cyclopropanation and aziridination as well as the use of copper (II) Lewis acids are warranted their own special chapters. Two further chapters concern the processes involved, as determined by mechanistic studies. Finally, a whole chapter is devoted to the synthetic applications. This is essential reading for researchers at academic institutions and professionals at pharmaceutical or agrochemical companies.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: