Cover image for Numerical Analysis and Optimization : An Introduction to Mathematical Modelling and Numerical Simulation.
Numerical Analysis and Optimization : An Introduction to Mathematical Modelling and Numerical Simulation.
Title:
Numerical Analysis and Optimization : An Introduction to Mathematical Modelling and Numerical Simulation.
Author:
Allaire, Grégoire.
ISBN:
9780191525520
Personal Author:
Physical Description:
1 online resource (472 pages)
Series:
Numerical Mathematics and Scientific Computation
Contents:
Contents -- 1 Introduction -- 1 Introduction to mathematical modelling and numerical simulation -- 1.1 General introduction -- 1.2 An example of modelling -- 1.3 Some classical models -- 1.3.1 The heat flow equation -- 1.3.2 The wave equation -- 1.3.3 The Laplacian -- 1.3.4 Schrödinger's equation -- 1.3.5 The Lamé system -- 1.3.6 The Stokes system -- 1.3.7 The plate equations -- 1.4 Numerical calculation by finite differences -- 1.4.1 Principles of the method -- 1.4.2 Numerical results for the heat flow equation -- 1.4.3 Numerical results for the advection equation -- 1.5 Remarks on mathematical models -- 1.5.1 The idea of a well-posed problem -- 1.5.2 Classification of PDEs -- 2 Finite difference method -- 2.1 Introduction -- 2.2 Finite differences for the heat equation -- 2.2.1 Various examples of schemes -- 2.2.2 Consistency and accuracy -- 2.2.3 Stability and Fourier analysis -- 2.2.4 Convergence of the schemes -- 2.2.5 Multilevel schemes -- 2.2.6 The multidimensional case -- 2.3 Other models -- 2.3.1 Advection equation -- 2.3.2 Wave equation -- 3 Variational formulation of elliptic problems -- 3.1 Generalities -- 3.1.1 Introduction -- 3.1.2 Classical formulation -- 3.1.3 The case of a space of one dimension -- 3.2 Variational approach -- 3.2.1 Green's formulas -- 3.2.2 Variational formulation -- 3.3 Lax-Milgram theory -- 3.3.1 Abstract framework -- 3.3.2 Application to the Laplacian -- 4 Sobolev spaces -- 4.1 Introduction and warning -- 4.2 Square integrable functions and weak differentiation -- 4.2.1 Some results from integration -- 4.2.2 Weak differentiation -- 4.3 Definition and principal properties -- 4.3.1 The space H[sup(1)](Ω) -- 4.3.2 The space H[sup(1)][sub(0)](Ω) -- 4.3.3 Traces and Green's formulas -- 4.3.4 A compactness result -- 4.3.5 The spaces H[sup(m)](Ω) -- 4.4 Some useful extra results.

4.4.1 Proof of the density theorem 4.3.5 -- 4.4.2 The space H(div) -- 4.4.3 The spaces W[sup(m,p)](Ω) -- 4.4.4 Duality -- 4.5 Link with distributions -- 5 Mathematical study of elliptic problems -- 5.1 Introduction -- 5.2 Study of the Laplacian -- 5.2.1 Dirichlet boundary conditions -- 5.2.2 Neumann boundary conditions -- 5.2.3 Variable coefficients -- 5.2.4 Qualitative properties -- 5.3 Solution of other models -- 5.3.1 System of linear elasticity -- 5.3.2 Stokes equations -- 6 Finite element method -- 6.1 Variational approximation -- 6.1.1 Introduction -- 6.1.2 General internal approximation -- 6.1.3 Galerkin method -- 6.1.4 Finite element method (general principles) -- 6.2 Finite elements in N = 1 dimension -- 6.2.1 P[sub(1)] finite elements -- 6.2.2 Convergence and error estimation -- 6.2.3 P[sub(2)] finite elements -- 6.2.4 Qualitative properties -- 6.2.5 Hermite finite elements -- 6.3 Finite elements in N ≥ 2 dimensions -- 6.3.1 Triangular finite elements -- 6.3.2 Convergence and error estimation -- 6.3.3 Rectangular finite elements -- 6.3.4 Finite elements for the Stokes problem -- 6.3.5 Visualization of the numerical results -- 7 Eigenvalue problems -- 7.1 Motivation and examples -- 7.1.1 Introduction -- 7.1.2 Solution of nonstationary problems -- 7.2 Spectral theory -- 7.2.1 Generalities -- 7.2.2 Spectral decomposition of a compact operator -- 7.3 Eigenvalues of an elliptic problem -- 7.3.1 Variational problem -- 7.3.2 Eigenvalues of the Laplacian -- 7.3.3 Other models -- 7.4 Numerical methods -- 7.4.1 Discretization by finite elements -- 7.4.2 Convergence and error estimates -- 8 Evolution problems -- 8.1 Motivation and examples -- 8.1.1 Introduction -- 8.1.2 Modelling and examples of parabolic equations -- 8.1.3 Modelling and examples of hyperbolic equations -- 8.2 Existence and uniqueness in the parabolic case.

8.2.1 Variational formulation -- 8.2.2 A general result -- 8.2.3 Applications -- 8.3 Existence and uniqueness in the hyperbolic case -- 8.3.1 Variational formulation -- 8.3.2 A general result -- 8.3.3 Applications -- 8.4 Qualitative properties in the parabolic case -- 8.4.1 Asymptotic behaviour -- 8.4.2 The maximum principle -- 8.4.3 Propagation at infinite velocity -- 8.4.4 Regularity and regularizing effect -- 8.4.5 Heat equation in the entire space -- 8.5 Qualitative properties in the hyperbolic case -- 8.5.1 Reversibility in time -- 8.5.2 Asymptotic behaviour and equipartition of energy -- 8.5.3 Finite velocity of propagation -- 8.6 Numerical methods in the parabolic case -- 8.6.1 Semidiscretization in space -- 8.6.2 Total discretization in space-time -- 8.7 Numerical methods in the hyperbolic case -- 8.7.1 Semidiscretization in space -- 8.7.2 Total discretization in space-time -- 9 Introduction to optimization -- 9.1 Motivation and examples -- 9.1.1 Introduction -- 9.1.2 Examples -- 9.1.3 Definitions and notation -- 9.1.4 Optimization in finite dimensions -- 9.2 Existence of a minimum in infinite dimensions -- 9.2.1 Examples of nonexistence -- 9.2.2 Convex analysis -- 9.2.3 Existence results -- 10 Optimality conditions and algorithms -- 10.1 Generalities -- 10.1.1 Introduction -- 10.1.2 Differentiability -- 10.2 Optimality conditions -- 10.2.1 Euler inequalities and convex constraints -- 10.2.2 Lagrange multipliers -- 10.3 Saddle point, Kuhn-Tucker theorem, duality -- 10.3.1 Saddle point -- 10.3.2 The Kuhn-Tucker theorem -- 10.3.3 Duality -- 10.4 Applications -- 10.4.1 Dual or complementary energy -- 10.4.2 Optimal command -- 10.4.3 Optimization of distributed systems -- 10.5 Numerical algorithms -- 10.5.1 Introduction -- 10.5.2 Gradient algorithms (case without constraints) -- 10.5.3 Gradient algorithms (case with constraints).

10.5.4 Newton's method -- 11 Methods of operational research (Written in collaboration with Stéphane Gaubert) -- 11.1 Introduction -- 11.2 Linear programming -- 11.2.1 Definitions and properties -- 11.2.2 The simplex algorithm -- 11.2.3 Interior point algorithms -- 11.2.4 Duality -- 11.3 Integer polyhedra -- 11.3.1 Extreme points of compact convex sets -- 11.3.2 Totally unimodular matrices -- 11.3.3 Flow problems -- 11.4 Dynamic programming -- 11.4.1 Bellman's optimality principle -- 11.4.2 Finite horizon problem -- 11.4.3 Minimum cost path, or optimal stopping, problem -- 11.5 Greedy algorithms -- 11.5.1 General points about greedy methods -- 11.5.2 Kruskal's algorithm for the minimum spanning tree problem -- 11.6 Separation and relaxation -- 11.6.1 Separation and evaluation (branch and bound) -- 11.6.2 Relaxation of combinatorial problems -- 12 Appendix: Review of hilbert spaces -- 13 Appendix: Matrix Numerical Analysis -- 13.1 Solution of linear systems -- 13.1.1 Review of matrix norms -- 13.1.2 Conditioning and stability -- 13.1.3 Direct methods -- 13.1.4 Iterative methods -- 13.1.5 The conjugate gradient method -- 13.2 Calculation of eigenvalues and eigenvectors -- 13.2.1 The power method -- 13.2.2 The Givens-Householder method -- 13.2.3 The Lanczos method -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Index notations.
Abstract:
This text, based on the author's teaching at --Eacute--;cole Polytechnique, introduces the reader to the world of mathematical modelling and numerical simulation. Including numerous exercises and examples, this is an ideal text for advanced students in Applied Mathematics, Engineering, Physical Science and Computer Science. - ;This text, based on the author's teaching at --Eacute--;cole Polytechnique, introduces the reader to the world of mathematical modelling and numerical simulation. Covering the finite difference method; variational formulation of elliptic problems; Sobolev spaces; elliptical problems; the finite element method; Eigenvalue problems; evolution problems; optimality conditions and algorithms and methods of operational research, and including a several exercises throughout, this is an. ideal text for advanced undergraduate students and graduates in applied mathematics, engineering, computer science, and the physical sciences. -.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: