Cover image for Photonics, Volume 3 : Photonics Technology and Instrumentation.
Photonics, Volume 3 : Photonics Technology and Instrumentation.
Title:
Photonics, Volume 3 : Photonics Technology and Instrumentation.
Author:
Andrews, David L.
ISBN:
9781119011767
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (544 pages)
Series:
A Wiley-Science Wise Co-Publication
Contents:
Photonics -- Contents -- List of Contributors -- Preface -- 1 Solid-State Lighting: Toward Smart and Ultraefficient Materials, Devices, Lamps, and Systems -- 1.1 A Brief History of SSL [1] -- 1.1.1 Stepping Stones: Red and Blue LEDs -- 1.1.2 State-of-the-Art SSL Device Architecture: InGaN Blue LED + Green/Red Phosphors -- 1.1.3 State-of-the-Art SSL Lamp Architectures -- 1.1.4 SSL Applications -- 1.2 Beyond the State-of-the-Art: Smart and Ultraefficient SSL -- 1.2.1 Characteristics: Multicolor Electroluminescence, Narrowband Spectra, High Modulation Speed -- 1.2.2 Potential Future System Applications -- 1.2.3 Benefits: "Effective" Efficiency, Consumption of Light, and GDP -- 1.3 Ultraefficient SSL Lighting: Toward Multicolor Semiconductor Electroluminescence -- 1.3.1 Blue Materials and Devices -- 1.3.2 Green Materials and Devices -- 1.3.3 Red Materials and Devices -- 1.4 Smart Solid-State Lighting: Toward Control of Flux and Spectra in Time and Space -- 1.4.1 Optical Integration: Mixing Colors While Maintaining Low Etendue -- 1.4.2 Optoelectronic Integration: Reliability, Functionality, and Cost -- 1.4.3 Optomechanical Integration: Control of Flux in Space -- 1.5 Summary and Conclusions -- Acknowledgments -- References -- 2 Integrated Optics Using High Contrast Gratings -- 2.1 Introduction -- 2.2 Physics of Near-Wavelength Grating -- 2.2.1 Overview of the Underlying Principles -- 2.2.2 Analytical Formulation -- 2.2.3 HCG Supermodes and Their Interferences -- 2.2.4 HCG Band Diagram -- 2.3 Applications of HCGs -- 2.3.1 High-Contrast-Grating-Based VCSELs -- 2.3.2 All-Pass Optical Filter Array as Optical Phase Array -- 2.3.3 Planar High Numerical Aperture Focusing Reflectors and Lenses -- 2.3.4 Resonator with Surface-Normal Optical Coupling -- 2.3.5 HCG for High-Precision Metrology -- 2.3.6 High Contrast Grating Hollow-Core Waveguide.

2.3.7 HCG Photon Cage -- 2.3.8 Vertical-to-in-Plane Optical Coupler -- 2.4 Summary -- Acknowledgments -- References -- 3 Plasmonic Crystals: Controlling Light With Periodically Structured Metal Films -- 3.1 Introduction -- 3.2 Surface Plasmon Polaritons -- 3.3 Basics of Surface Plasmon Polaritonic Crystals -- 3.3.1 Bloch Mode Structure -- 3.3.2 Enhanced Optical Transmission Through Plasmonic Crystals -- 3.3.3 Improving Surface Transparency of Dielectrics with Nanostructured Metal -- 3.4 Polarization and Wavelength Management with Plasmonic Crystals -- 3.4.1 Polarization Properties of Plasmonic Crystals with Rectangular Basis -- 3.4.2 Birefringence of Plasmonic Crystals with Elliptical Basis -- 3.4.3 Polarization Superprism Effect -- 3.4.4 Four-Level Polarization Discriminator Based on SPPCs -- 3.4.5 Wavelength Demultiplexing with Plasmonic Crystals -- 3.5 Chirped Plasmonic Crystals: Broadband and Broadangle SPP Antennas Based on Plasmonic Crystals -- 3.6 Active Control of Light with Plasmonic Crystals -- 3.6.1 Electronically Controlled SPP Dispersion -- 3.6.2 Magneto-Optical Control of Plasmonic Crystal Transmission -- 3.6.3 Acoustic Effects in Plasmonic Crystals -- 3.6.4 Nonlinear Plasmonic Crystals -- 3.7 Conclusion -- Acknowledgments -- References -- 4 Optical Holography -- 4.1 Introduction -- 4.2 Basic Concepts in Holography -- 4.2.1 Holographic Recording and Image Formation -- 4.2.2 Grating Equation -- 4.3 Hologram Analysis -- 4.3.1 Hologram Image Analysis and Design -- 4.3.2 Hologram Diffraction Efficiency -- 4.3.3 Comments on Rigorous Coupled Wave Analysis -- 4.4 Hologram Geometries -- 4.5 Holographic Recording Materials -- 4.6 Digital Holography -- 4.6.1 Numerical Reconstruction Methods -- 4.6.2 Image Enhancement Techniques -- 4.7 Computer Generated Holography -- 4.7.1 Wavefront Computation and Sampling.

4.7.2 Wavefront Encoding Schemes and CGH Formation -- 4.8 Holographic Applications -- 4.8.1 Holographic Optical Elements -- 4.8.2 Holographic Interferometry -- 4.8.3 Near Real Time Holographic Displays -- 4.8.4 Holographic Data Storage -- 4.8.5 Volume Holographic Imaging Systems -- 4.8.6 Holographic Planar Concentrators -- 4.8.7 Dynamic Holographic Assembly -- References -- 5 Cloaking and Transformation Optics -- 5.1 Introduction -- 5.2 Theoretical Underpinning -- 5.2.1 The Genesis of Transformation Optics -- 5.2.2 The Electromagnetic Cloak -- 5.3 The Carpet Cloak -- 5.3.1 Cloaking Using Natural Materials -- 5.4 Conformal Cloaking -- 5.5 Spacetime Cloaking -- 5.5.1 Realization of the Spacetime Cloak -- 5.5.2 Applications of the Spacetime Cloak -- 5.6 Conclusion and Outlook: Beyond Optics -- Appendix 5.A: Technicalities -- Appendix 5.B: Vectors and Tensors in Flat Spacetime -- Appendix 5.C: Maxwell's Equations and Constitutive Relations in Covariant Form -- References -- 6 Photonic Data Buffers -- 6.1 Introduction -- 6.2 Applications of Photonic Buffers -- 6.2.1 Photonic Buffers in Computing and Signal Processing -- 6.2.2 Photonic Buffers in Optical Packet Switches and Routers -- 6.3 Limitations of Electronics -- 6.4 Photonic Buffer Technologies -- 6.4.1 Variable Photonic Buffers using Fiber Delay Lines and Optical Switches -- 6.4.2 Variable Photonic Buffers using Slow Light Effect -- 6.4.3 Hybrid Photonic Buffers using CMOS and Photonics -- 6.5 Integration Efforts -- 6.6 Summary -- References -- 7 Optical Forces, Trapping and Manipulation -- 7.1 Introduction -- 7.1.1 A Brief History of Optical Forces -- 7.1.2 Optical Forces Might be Useful -- 7.1.3 A Diverse Range of Applications -- 7.2 Theory of Optical Forces -- 7.2.1 Force Efficiency -- 7.2.2 Rayleigh and Dipole Scattering Models of Optical Tweezers.

7.2.3 Corpuscular Ray Model of Optical Tweezers -- 7.2.4 The Distinction Between Gradient, Scattering, Conservative and Nonconservative Forces -- 7.3 Theory of Optical Torques -- 7.3.1 Spin and Orbital Angular Momentum -- 7.3.2 Optical Vortices -- 7.3.3 Angular Momentum of Non-Paraxial Electromagnetic Fields -- 7.3.4 Rotational Frequency Shift -- 7.4 Measurement of Forces and Torques -- 7.4.1 The Relationship Between Force and Position -- 7.4.2 Measurement of Potentials -- 7.4.3 Measurement of Spin Angular Momentum -- 7.4.4 Measurement of Orbital Angular Momentum -- 7.5 Calculation of Forces and Torques -- 7.5.1 The T-Matrix Description of Scattering -- 7.5.2 Spherical Wave Spectrum -- 7.5.3 Force and Torque -- 7.5.4 Incident Beam -- 7.5.5 Optical Tweezers Toolbox -- 7.5.6 Practical Considerations of the Rayleigh Model -- 7.5.7 Practical Considerations of the Ray Model -- 7.6 Conclusion -- References -- 8 OPTOFLUIDICS -- 8.1 Introduction -- 8.2 Photonics with Fluid Manipulation -- 8.2.1 Optofluidic Switch -- 8.2.2 Flow Induced Optical Scanner -- 8.2.3 Optical Resonance Fine Tuning -- 8.2.4 Optofluidic Laser -- 8.2.5 Optofluidic Waveguide for Microelectronics -- 8.3 Fluidic Sensing -- 8.4 Fluidic Enabled Imaging -- 8.5 Fluid Assisted Nanopatterning -- 8.6 Conclusions and Outlook -- Acknowledgments -- References -- 9 Nanoplasmonic Sensing for Nanomaterials Science -- 9.1 Introduction -- 9.2 Nanoplasmonic Sensing and Readout -- 9.3 Inherent Limitations of Nanoplasmonic Sensors -- 9.4 Direct Nanoplasmonic Sensing -- 9.5 Indirect Nanoplasmonic Sensing -- 9.6 Overview on Different Examples -- 9.6.1 Polymer Swelling -- 9.6.2 Hydride Formation -- 9.6.3 Phase Transitions -- 9.6.4 Corrosion -- 9.6.5 Nanoparticle Sintering -- 9.6.6 Recrystallization -- 9.6.7 Molecular Diffusion in Materials -- 9.6.8 Gas Sensing and Catalysis Applications.

9.7 Discussion and Outlook -- References -- 10 Laser Fabrication and Nanostructuring -- 10.1 Introduction -- 10.2 Laser Systems for Nanostructuring -- 10.3 Surface Structuring by Laser Ablation -- 10.3.1 Structuring Via Interferometer -- 10.3.2 Near-field Nanostructuring -- 10.4 Generation of thin Films by Laser Ablation in Vacuum -- 10.5 Generation of Nanoparticles by Laser Ablation in Liquids -- 10.6 Laser Induced Volume Structures -- 10.7 Direct Writing of Polymer Components Via Two-Photon Polymerization -- 10.8 Conclusion -- References -- 11 Free Electron Lasers for Photonics Technology by Wiley -- 11.1 Introduction -- 11.2 Physical Principles -- 11.2.1 Synchrotron Emission -- 11.2.2 Free Electron Laser Interaction -- 11.2.3 Oscillators -- 11.2.4 Amplifiers -- 11.3 Worldwide Fel Status -- 11.3.1 X-ray FELs -- 11.3.2 Visible, Infrared, and Far Infrared FELs -- 11.4 Applications -- 11.4.1 THz -- 11.4.2 IR -- 11.4.3 UV and VUV -- 11.4.4 Soft X-ray -- 11.4.5 Hard X-ray -- 11.5 Summary and Conclusion -- References -- Index -- Supplemental Images -- EULA.
Abstract:
Discusses the basic physical principles underlying the technology instrumentation of photonics This volume discusses photonics technology and instrumentation. The topics discussed in this volume are: Communication Networks; Data Buffers; Defense and Security Applications; Detectors; Fiber Optics and Amplifiers; Green Photonics; Instrumentation and Metrology; Interferometers; Light-Harvesting Materials; Logic Devices; Optical Communications; Remote Sensing; Solar Energy; Solid-State Lighting; Wavelength Conversion Comprehensive and accessible coverage of the whole of modern photonics Emphasizes processes and applications that specifically exploit photon attributes of light Deals with the rapidly advancing area of modern optics Chapters are written by top scientists in their field Written for the graduate level student in physical sciences; Industrial and academic researchers in photonics, graduate students in the area; College lecturers, educators, policymakers, consultants, Scientific and technical libraries, government laboratories, NIH.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: