Cover image for Photonics, Volume 4 : Biomedical Photonics, Spectroscopy, and Microscopy.
Photonics, Volume 4 : Biomedical Photonics, Spectroscopy, and Microscopy.
Title:
Photonics, Volume 4 : Biomedical Photonics, Spectroscopy, and Microscopy.
Author:
Andrews, David L.
ISBN:
9781119014027
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (602 pages)
Series:
A Wiley-Science Wise Co-Publication
Contents:
Photonics -- Contents -- List of Contributors -- Preface -- 1 Fluorescence -- 1.1 Introduction -- 1.2 Spectra -- 1.2.1 Background and Theory -- 1.2.2 Experimental -- 1.2.3 Application Example-Melanin Spectra -- 1.3 Quantum Yield -- 1.3.1 Theory -- 1.3.2 Experimental -- 1.3.3 Application Example-ThT Detection of Sheet Structure -- 1.4 Lifetime -- 1.4.1 Theory -- 1.4.2 Experimental -- 1.4.3 Application Example-In Vivo Glucose Sensing -- 1.5 Quenching -- 1.5.1 Theory -- 1.5.2 Application-Metal Ion Quenching -- 1.6 Anisotropy -- 1.6.1 Theory -- 1.6.2 Experimental -- 1.6.3 Application Example-Nanoparticle Metrology -- 1.7 Microscopy -- 1.7.1 Systems and Techniques -- 1.7.2 Application Example-Gold Nanorods in Cells -- 1.8 Conclusions -- Acknowledgments -- 2 Single-Molecule Detection and Spectroscopy -- 2.1 Introduction -- 2.2 Experimental Setups -- 2.2.1 Principles -- 2.2.2 Correction of Aberrations -- 2.2.3 Polarization Structure at the Focus -- 2.2.4 Various Microscopy Methods -- 2.3 Fluorescence Spectroscopy -- 2.3.1 Introduction, Signal-to-Noise Ratio -- 2.3.2 Sample Preparation -- 2.3.3 Orientation -- 2.3.4 Blinking -- 2.3.5 Bleaching -- 2.3.6 Superresolution -- 2.4 Fluorescence Correlation Spectroscopy -- 2.4.1 Photon Counting Histograms, Burst Analysis -- 2.4.2 Fluorescence Correlation Spectroscopy -- 2.4.3 Multiparameter Analysis -- 2.5 Fluorescence Excitation Spectroscopy -- 2.5.1 Zero-Phonon Line and Phonon Wing -- 2.5.2 Inhomogeneous Broadening -- 2.5.3 Hole-Burning [30] -- 2.5.4 Single-Molecule Spectroscopy -- 2.5.5 Scope of Low-Temperature Single-Molecule Spectroscopy -- 2.6 Other Detection Methods -- 2.6.1 General Considerations on Signal, Background, and Noise -- 2.6.2 Dark-Field Scattering, Total Internal Reflection -- 2.6.3 Absorption, Extinction, Interference-Based Methods -- 2.6.4 Pump-Probe and Photothermal Detections.

2.7 Conclusion -- Acknowledgments -- References -- 3 Resonance Energy Transfer -- 3.1 Introduction -- 3.2 History of RET -- 3.2.1 The First Experiments -- 3.2.2 Early Developments of Theory -- 3.2.3 Förster Theory -- 3.3 The Photophysics of RET -- 3.3.1 Primary Excitation Processes -- 3.3.2 Coupling of Electronic Transitions -- 3.3.3 Dissipation and Line Broadening -- 3.3.4 Förster Equation -- 3.3.5 Orientation Dependence -- 3.3.6 Polarization Features -- 3.3.7 Diffusion Effects -- 3.3.8 Long-Range Transfer -- 3.3.9 Dexter Transfer -- 3.4 Investigative Applications of RET in Molecular Biology -- 3.4.1 Spectroscopic Ruler -- 3.4.2 Conformational Change -- 3.4.3 Intensity-Based Imaging -- 3.4.4 Lifetime-Based Imaging -- 3.4.5 Other Applications -- 3.5 The Role of RET in Light-Harvesting Complexes -- 3.5.1 Introduction -- 3.5.2 Photosynthetic Excitons -- Acknowledgments -- References -- 4 Biophotonics of Photosynthesis -- 4.1 Introduction -- 4.2 Structure of Pigment-Protein Complexes and Structure-Function Relationships -- 4.2.1 Photosystem I (PS I) and Photosystem II (PS II) -- 4.2.2 PCs of Purple Bacteria -- 4.3 Key Concepts in Physics of Pigment-Protein Complexes -- 4.3.1 Excitons -- 4.3.2 Excitation Energy Transfer -- 4.3.3 Homogeneous and Inhomogeneous Broadening, Zero-Phonon Lines (ZPLs), and Phonon Sidebands (PSBs) -- 4.3.4 Proteins at Low Temperatures -- 4.4 Experimental Techniques -- 4.4.1 Spectral Hole-Burning, Fluorescence Line-Narrowing, and DFLN -- 4.4.2 Single Photosynthetic Complex Spectroscopy -- 4.5 Examples -- 4.5.1 LH2 Antenna Complex of Purple Bacteria -- 4.5.2 Cyanobacterial Photosystem I -- 4.5.3 Plant LHC II-Single Complex Spectroscopy and Nonphotochemical Quenching -- 4.5.4 CP43-The Protein Energy Landscape Parameters -- 4.5.5 Probing Electron Transfer (ET) Times and Their Distributions in Photosynthetic RCs by SHB.

4.6 Conclusions -- Acknowledgments -- References -- 5 Optical Sectioning Microscopy and Biological Imaging -- 5.1 Introduction and Background -- 5.1.1 The Biological Context and Limitations -- 5.1.2 Definitions and Terms -- 5.2 Confocal Imaging -- 5.2.1 Introduction to Confocal Imaging -- 5.2.2 Point Scanned Microscopy -- 5.2.3 Summary on Basic Confocal Microscopy -- 5.3 Nonlinear Microscopy -- 5.3.1 Multiphoton Fluorescence Microscopy -- 5.3.2 Harmonic Microscopy (SHG and THG) -- 5.3.3 Coherent Anti-Stokes Raman Scattering Microscopy -- 5.3.4 Stimulated Raman Scattering Microscopy -- 5.4 Practical Implementation of Nonlinear Microscopy -- 5.5 Recent Advances in Nonlinear Microscopy -- 5.5.1 Miniature Instrumentation and Clinical applications -- 5.5.2 Adaptive Optics for In-Depth Imaging -- 5.6 Widefield Optical Sectioning by Specialized Illumination Methods -- 5.6.1 Single Plane Illumination Microscopy (SPIM) -- 5.6.2 Structured Illumination Microscopy -- 5.6.3 Sub-diffraction-Limited Imaging -- 5.7 Summary -- References -- 6 Cell Handling, Sorting, and Viability -- 6.1 Handling Cells with Light -- 6.1.1 Light-Cell Interaction: Momentum Exchange -- 6.1.2 Dielectric Tagging: Using Microspheres as Optical Handles -- 6.1.3 Cell Positioning -- 6.1.4 Cellular Biomechanics: Mechanotransduction and Cell Deformations -- 6.1.5 Cytometry -- 6.2 Optical Sorting -- 6.2.1 Active Sorting -- 6.2.2 Passive Sorting -- 6.3 Cell Viability -- 6.3.1 Choosing the Optimal Wavelength -- 6.3.2 Thermal Effects -- 6.3.3 Power and Energy Dose -- 6.3.4 Growth and Division Time -- 6.3.5 Propidium Iodide -- 6.3.6 Internal pH (pHi) -- 6.3.7 Reactive Oxygen Species -- References -- 7 Tissue Polarimetry -- 7.1 Introduction -- 7.2 Polarized Light Fundamentals -- 7.2.1 Polarization States -- 7.2.2 Interaction with a Sample -- 7.2.3 Decompositions into "Elementary" Component Matrices.

7.2.4 Summary -- 7.3 Instrumentation -- 7.3.1 General Principles -- 7.3.2 Commonly Used PSAs -- 7.3.3 Examples of Tissue Polarimetry Instruments -- 7.3.4 Summary -- 7.4 Forward Modeling and Testing in Phantoms -- 7.4.1 Forward Modeling of Polarized Light Propagation in Tissue -- 7.4.2 Experimental Testing and Validation in Tissue Phantoms -- 7.4.3 Summary -- 7.5 Applications -- 7.5.1 Polarization-Gated Surface and Subsurface Imaging -- 7.5.2 Tissue Assessment with Mueller Polarimetry -- 7.5.3 Summary -- 7.6 Conclusions and Outlook -- References -- 8 Optical Waveguide Biosensors -- 8.1 Introduction -- 8.2 Fundamentals of Label-Free Optical Waveguide Biosensing -- 8.2.1 Principle of Operation -- 8.2.2 Optical Waveguide Technology -- 8.3 Surface Biofunctionalization -- 8.3.1 Bioreceptors -- 8.3.2 Immobilization Techniques -- 8.3.3 Biofunctionalization Strategies for Multiplexing -- 8.4 Evaluation of Optical Biosensors -- 8.5 Integrated Optical Waveguide-Based Biosensors -- 8.5.1 Interferometric Biosensors -- 8.5.2 Integrated Optical Microcavity-Based Biosensors -- 8.5.3 Grating-Based Biosensors -- 8.5.4 Photonic Crystal-Based Biosensors -- 8.5.5 Recent Trends in Label-Free Integrated Optics-Based Waveguide Biosensors -- 8.6 Optical Fiber-Based Biosensors -- 8.6.1 Fiber Bragg Grating-Based Biosensors -- 8.6.2 Long-Period Grating-Based Biosensors -- 8.6.3 Optical Fiber-Based Interferometric Biosensors -- 8.6.4 Evanescence Wave Absorbance-Based Optical Fiber -- 8.7 Lab-On-A-Chip Integration -- 8.8 Summary -- References -- 9 Light Propagation in Highly Scattering Turbid Media: Concepts, Techniques, and Biomedical Applications -- 9.1 Introduction -- 9.2 Physics Behind Optical Imaging Through a Highly Scattering Turbid Medium -- 9.2.1 Components of Transmitted Light -- 9.2.2 Key Optical Parameters for Describing Light Propagation in Highly Scattering Media.

9.2.3 Values of Key Optical Parameters for Human Tissues and Some Model Media -- 9.2.4 Optical Absorption Spectra of Key Chromophores in Tissues -- 9.3 Study of Ballistic and Diffuse Light Components -- 9.4 Photon-Sorting Gates -- 9.4.1 Time Gate -- 9.4.2 Absorption Gate -- 9.4.3 Fourier Space Gate and Microscopic Imaging -- 9.4.4 Polarization Gate -- 9.5 Transition From Ballistic to Diffuse Imaging in Turbid Media -- 9.6 Conclusion -- Acknowledgments -- References -- 10 Photodynamic Therapy -- 10.1 Historical Overview of PDT -- 10.2 Introduction to PDT -- 10.2.1 Photophysics -- 10.2.2 Photochemistry -- 10.3 Photosensitizer Structure and Photophysical Properties -- 10.4 Light Dosimetry and Photodynamic Therapy Light Sources -- 10.4.1 Tissue Optics -- 10.4.2 Fundamental Dosimetry Concepts -- 10.5 Light-Based Strategies to Enhance PDT -- 10.5.1 Two-Photon Excitation-PDT -- 10.5.2 Metronomic PDT -- 10.6 PDT Targeting and Nanotechnology -- 10.7 PDT for Dermatology -- 10.7.1 Actinic Keratosis -- 10.7.2 Bowens Disease Squamous Cell Carcinoma In Situ -- 10.7.3 Basal Cell Carcinoma -- 10.7.4 Melanoma -- 10.7.5 Mycosis Fungoides -- 10.7.6 Acne Vulgaris -- 10.7.7 Photorejuvenation -- 10.8 PDT for Oncology -- 10.9 PDT for Infectious Disease -- 10.9.1 In Vitro Studies of PDT -- 10.9.2 Photoinactivation of Viruses, Fungi, and Parasites -- 10.9.3 Animal Models of Wound Infections -- 10.9.4 Oral and Dental Infections -- 10.9.5 Leishmania -- 10.9.6 Mycobacterium tuberculosis -- 10.9.7 Otitis Media with Effusion (OME) -- 10.9.8 Osteomyelitis -- 10.9.9 Viral Infections -- 10.9.10 Clinical Applications for Peptic Ulcer Disease (PUD) -- 10.10 PDT in Ophthalmology -- 10.11 PDT and The Immune System -- 10.12 Conclusion -- Acknowledgment -- References -- 11 Imaging and Probing Cells Beyond the Optical Diffraction Limit.

11.1 The Quest for Achieving Optical Resolution Beyond ABBE'S Limit.
Abstract:
Discusses the basic physical principles underlying Biomedical Photonics, spectroscopy and microscopy This volume discusses biomedical photonics, spectroscopy and microscopy, the basic physical principles underlying the technology and its applications. The topics discussed in this volume are: Biophotonics; Fluorescence and Phosphorescence; Medical Photonics; Microscopy; Nonlinear Optics; Ophthalmic Technology; Optical Tomography; Optofluidics; Photodynamic Therapy; Image Processing; Imaging Systems; Sensors; Single Molecule Detection; Futurology in Photonics. Comprehensive and accessible coverage of the whole of modern photonics Emphasizes processes and applications that specifically exploit photon attributes of light Deals with the rapidly advancing area of modern optics Chapters are written by top scientists in their field Written for the graduate level student in physical sciences; Industrial and academic researchers in photonics, graduate students in the area; College lecturers, educators, policymakers, consultants, Scientific and technical libraries, government laboratories, NIH.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: