Cover image for Breath Analysis For Clinical Diagnosis & Therapeutic Monitoring.
Breath Analysis For Clinical Diagnosis & Therapeutic Monitoring.
Title:
Breath Analysis For Clinical Diagnosis & Therapeutic Monitoring.
Author:
Amann , Anton.
ISBN:
9789812701954
Personal Author:
Physical Description:
1 online resource (557 pages)
Contents:
CONTENTS -- Foreword -- Part A. New Analytical Techniques -- 1. Selected Ion Flow Tube Mass Spectromet,ry, SIFT-MS, for On-Line Trace Gas Analysis of Breath D. Smith, P. Spandl -- 1. Introduction -- 2. Selected Ion Flow Tube Mass Spectrometry, SIFT-MS -- 2.1. Principle of SIFT-MS -- 2.2. Detection Limit, Accuracy, and Precision -- 2.3. Modes of Operation -- 2.4. Sampling Procedures -- 2.5. A Note on the Ion Chemistry Underpinning SIFT-MS -- 2.6. Validation of the Quantitative Accuracy of SIFT-MS -- 2.7. SIFT-MS Instrumentation -- 3. SIFT-MS Case Studies -- 3.1. Physiological Breath Composition -- 3.1.1. Common breath metabolites -- 3.1.2. Influence of food -- 3.1.3. Ethanol metabolism -- 3.2. Exposure to Exogenous Toxic Substances -- 3.3. Clinical Studies, Disease Related -- 3.3.1. Helicobacter pylori infection -- 3.3.2. Renal failure -- 3.3.3. Substance abuse -- 3.3.4. Urine analysis -- infection and cancer -- 4. Summary, Some Concluding Remarks and Future Prospects for SIFT-MS -- Acknowledgements -- References -- 2. Occupational Exposure Assessment Through Analysis of Human Breath and Ambient Air Using IMR-Mass Spectrometry J. Villinger, S. Praun, J . Rossler-Gruf, A . Dornauer, H. Neumager, E. Baumgartrier -- 1. Introduction -- 2. Methods -- 2.1. Technology -- 2.2. Sampling Methods -- 3. Results -- 3.1. Online -- 3.1.1. Gas clearance monitoring -- 3.1.2. Emission f r o m grinding discs -- 3.1.3. Monitoring of "Hoffmann analytes" in cigarette smoke -- 3.2. Ofline -- 3.2.1. Pharmaceutical industry: dimethylformamide (DMF) in clean room ambient air and in exhaled breath -- 3.2.2. Glass manufacturing industry: diethyl ether, acetone -- levels in exhaled breath (off-line) and in ambient air (on-line) -- 3.2.3. Spray painting: toluene -- comparison of levels in blood and in exhaled breath -- 4. Conclusions -- References.

3 . Proton Transfer R,eaction Time-of-Flight Mass Spectrometry: A Good Prospect for Diagnostic Breath Analysis? R. S. Blake, C. Whyte, P. S. Monks, A.M. Ellis -- 1. Introduction -- 2. Experimental Details -- 3. Performance of the PTR-TOF-MS Instrument -- 4. Solving the Duty Cycle Problem: Hadamard Transform TOF-MS -- 5 . Conclusions -- Acknowledgements -- References -- 4. Metabolites in Human Breath: Ion Mobility Spectrometers as Diagnostic Tools for Lung Diseases J . I. Baumbach, W. Vautz, V. Ruzsanyi, L. Freitag -- 1. Introduction -- 2. Material and Methods: Ion Mobility Spectrometry -- 3. Results and Discussion -- 4. Conclusions -- Acknowledgements -- References -- 5. Laser Spectroscopic On-Line Monitoring of Exhaled Trace Gases G. von Busum, D. Hulmer, P. Hering, M. Murtz -- 1. Introduction -- 2. Experimental -- 3. Results -- 4. Conclusions -- Acknowledgement -- References -- 6, Exhaled Human Breath Analysis with Quantum Cascade Laser-Based Gas Sensors G. Wysocki, M. McCurdy, S. So, C. Roller, F. K. Tittel -- 1. Introduction -- 2. Experimental -- 2.1. Gas Sensor Configuration -- 2.2. Selection of the Spectral Lines Suitable f o r Breath Analysis -- 2.3. Gas Sensor Calibration -- 2.4. Breath Sample Collection -- 2.5. Example Measurements of Breath Samples -- 2.6. Sensor Integration -- 3. Summary -- Acknowledgements -- References -- 7. TCNQ Derivatives-Based Sensors for Breath Gas Analysis G. V. Karnarchuk, 0. P. Pospyelov, Yu. L. Alexandrov, A . V. Yerernenko, A . V. Kruvchenko, E. G. Kushch, L. V. Kamarchuk, E. Faulques -- 1. Introduction -- 2. Experimental Technique -- 3. Results and Discussion -- 4. Conclusions -- Acknowledgement -- References -- Part B. Nitric Oxide, Carbon Monoxide, and Ethane -- 8. Exhaled Nitric Oxide: How and Why We Know It Is Important L. E. Gusta.fsson -- 1. Introduction -- 2. Exhaled NO in Asthma -- Initial Studies.

3. Identity of Exhaled NO -- 4. Impact of the Discovery of Exhaled NO -- 5. What Characterizes an Exhaled Respiratory System Marker? -- 6. Some Notes on Technique and Technologies for Exhaled NO Measurements -- 7. Why Should We Measure Exhaled Nitric Oxide? -- 8. Is Airway Production of NO a Protective System? -- 9. Conclusions -- Acknowledgements -- References -- 9. Nitric Oxide in Exhaled Breath: A Window on Lung Physiology R. A . Dweik and Pulmonary Disease -- 1. Introduction -- 2. Nitric Oxide Synthesis and Metabolism -- 3. NO in the Lung -- 3.1. Vascular Eflects of NO -- 3.2. Airway Effects of NO -- 3.3. The Role of NO in Matching Ventilation and Perfusion -- 4. NO in Lung Disease -- 4.1. NO in Lung Inflammation -- 4.2. Asthma -- 4.3. Pulmonary Hypertension -- 4.4. NO in Other Lung Diseases -- 5. Measuring NO in Exhaled Breath -- 6. Summary and Conclusions -- References -- 10. Nasal Nitric Oxide Measurements as a Diagnostic Tool: Ready for Clinical Use? J . 0. Lundberg -- 1. Background -- 2. Why Measure Nasal NO? -- 3. In Which Conditions Might Nasal NO Be Clinically Applicable? -- 4. How to Measure Nasal NO -- 5. Nasal NO and Paranasal Sinus Function -- 6. Summary and Future Directions -- References -- 11. Exhaled Nitric Oxide in Hepatopulmonary Syndrome G. Rolla -- 1. Introduction -- 1.1. Intrapulmonary Vascular Dilatations (IP VD) -- 1.2. NO Theory -- 1.3. Experimental Model of HPS -- 2. Exhaled NO -- 2.1. Measurement of NO in Exhaled Air -- 2.2. Exhaled NO in HPS -- 3. Concluding Remarks -- References -- 12. Exhaled Nitric Oxide and Pulmonary Complications after Allogeneic Stem Cell Transplantation C. Bucca, L. Brussino, E. Panaro, G. Aitoro, L. Giaccone, B. Bruno -- 1. Introduction -- 2. Methods -- 3. Statistical Analysis -- 4. Results -- 5 . Discussion -- References.

13. Isotope Selective Detection of Nitric Oxide in Human Exhalation J. Lauenstein. K.-H. Gericke -- 1. Introduction -- 2. Theory -- 3. Experimental Setup -- 4. Results -- 5. Conclusions -- References -- 14. Diagnostic Aspects of Exhaled Nitric Oxide in Cardiothoracic Anaesthesia A. Szabd, T. Kovesi, J. G d , D. Royston, N. Murczin -- 1. Introduction -- 2. The Role of Ischaemia-Reperfusion Injury in Complications Following Cardiot horacic Surgery and the Need for Biomarkers of Lung Injury -- 3. Scope of Biomarker Research Applicable to Lung Injury Associated with Cardiothoracic Surgery -- 4. Biomarkers of Ischaemia-Reperfusion-Induced Lung Injury Based on Pathogenesis -- 4.1. Role of Microvascular Endothelial and Epithelial Cells -- 4.2. Responses of Endothelial Cells to Hypoxia, Ischaernia and Reperfusion -- 4.3. Role of Leukocyte Activation -- 5. NO as a Mediator and Biomarker of Lung Ischaemia-Reperfusion Injury -- 6. Endothelial NO Bioactivity in the Setting of Oxidative Stress and Enhanced Endothelial-Leukocyte Interactions: Cell Culture Studies -- 7. Influence of Ischaemia-Reperfusion Injury on NO Pathways: Studies in Animal Models -- 8. Studies on Pulmonary NO Metabolism in Human Lung Injury Utilising Analysis of Exhaled Breath -- References -- 15. Can Inhalation Carbon Monoxide be Utilized as a Therapeutic Modality in Human Diseases? T. Dolinay, A. M. K. Choi, S. W. Ryter -- 1. Introduction -- 1.1. Heme Oxygenase Isozymes and Activity -- 1.2. Molecular Basis f o r Regulation of HO-1 in Cells and Tissues -- 1.3. Cytoprotection by NO-1: An Overview -- 1.3.1. Antiapoptotic effects of HO-l/CO -- 2. Protective Effects of CO in Acute Lung Injury Models -- 2.1. HO-1 and CO Protect Against Hyperoxic Lung Injury -- 2.2. CO Protects Against Ischaemia-Reperfusion Injury.

2.3. Cytoprotective Effect of CO Observed an a Model of Ventilator-Induced Lung Injury -- 3. Carbon Monoxide (CO): An Anti-Inflammatory Mediator in Sepsis Models -- 3.1. Anti-Inflammatory Eflect of CO in a Macrophage Sepsis Model -- 3.2. CO Reduces Granulocyte-Macrophage Colony Stimulating Factor Production in Sepsis -- 3.3. Conclusion -- 4. Protective Roles of CO in Organ Transplantation -- 4.1. CO Protected Against Acute Rejection in Lung Transplantation -- 4.2. Antiprolifemtive Effect of CO in Vascular nansplant and Balloon Injury Models -- 4.3. Antiproliferative Eflect of CO in T-Lymphocytes -- 5. Asthma -- 5.1. Chronic Inflammation -- 5.2. Airway Remodeling -- 6. Challenges Ahead for Therapeutic Use of CO in Human Disease -- Acknowledgements -- Appendix: Abbreviations -- References -- 16. Breath Ethane in Disease: Methods for Analysis Based on Room Air Correction K. A. Cope -- 1. Introduction -- 2 . Methods -- 2.1. Human Studies Procotols -- 2.2. The Collection of Breath Samples -- 2.3. Room Air Measurements -- 2.4. Chromatographic Analysis -- 2.5. Data Analysis -- 3. Results -- 4. Discussion -- Acknowledgements -- References -- Part C. Broadly-Based Studies -- 17. Current Status of Clinical Breath Analysis T. H. Ris b y -- 1. Introduction -- 2. Brief History -- 3. Current Status -- 4. Important Research Gaps to Address -- 5. New Directions for Clinical Breath Analysis -- 5.1. Breath Condensate -- 6. Conclusions -- Acknowledgements -- References -- 18. VOC Breath Markers in Critically I11 Patients: Potential and Limitations J . K. Schubert, W. Miekisch, G. F. E. Noldge-Schomburg -- 1. Introduction: Monitoring in the ICU -- 2. Diagnostic Potential of Volatile Organic Compounds in the Breath of the Critically I11 -- 2.1. Inflammation and Oxidative I n j u r y -- 2.2. Acute Lung Injury, ARDS, Pneumonia -- 2.3. Metabolism -- 2.4. Organ Function.

2.4.1. Hepatic and renal failure.
Abstract:
This book describes how the analysis of the trace gases in exhaled breath can be used for non-invasive clinical diagnosis of disease and for monitoring the effectiveness of therapy. This approach offers an important addition to the diagnostic techniques available to medicine, having the advantage that on-line breath analysis can provide information to the clinician immediately and thus facilitate rapid diagnosis and treatment. The book is a compilation of contributions to a conference held in Dornbirn, Austria, 23–26 September 2004 on various aspects of this new topic. Written by the foremost workers in the field, it will provide clinicians and others in the medical fraternity with an up-to-date summary of the status of the subject. The wide scope of the chapters ranges from descriptions of the analytical methods that are available, through the use of breath analysis in the study of physiological phenomena, to the identification of biomarkers of particular injury and disease. The proceedings have been selected for coverage in:. • Index to Scientific & Technical Proceedings® (ISTP® / ISI Proceedings). • Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings). • CC Proceedings — Biomedical, Biological & Agricultural Sciences.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: