Cover image for Handbook of Cellulosic Ethanol.
Handbook of Cellulosic Ethanol.
Title:
Handbook of Cellulosic Ethanol.
Author:
Amarasekara, Ananda S.
ISBN:
9781118878699
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (604 pages)
Contents:
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1 Introduction to Cellulosic Ethanol -- 1 Renewable Fuels -- 1.1 Introduction -- 1.2 Renewable Energy -- 1.3 Biofuels -- 1.3.1 Advantages of Biofuels -- 1.3.2 Gaseous Biofuels -- 1.3.3 Liquid Biofuels -- 1.4 Renewable Energy in the United States -- 1.4.1 Federal Agencies Promoting Renewable Energy -- 1.4.2 Incentives for Renewable Fuels -- 1.5 Renewable Fuel Legislature in the United States -- 1.5.1 Renewable Fuel Standards of Energy Independence and Security Act of 2007 -- 1.5.2 US EPA 2013 Renewable Fuel Standards -- References -- 2 Bioethanol as a Transportation Fuel -- 2.1 Introduction - History of Bioethanol as a Transportation Fuel -- 2.2 Alcohol Fuels -- 2.3 Fuel Characteristics of Ethanol -- 2.3.1 Disadvantages of Ethanol -- 2.4 Corn and Sugarcane Ethanol -- 2.4.1 First Generation Ethanol Production -- 2.5 Advantages of Cellulosic Ethanol -- References -- 3 Feedstocks for Cellulosic Ethanol Production -- 3.1 Introduction -- 3.2 Cellulosic Ethanol Feedstock Types -- 3.3 Potential of Agricultural Wastes -- 3.4 Major Crop Residue Feedstock -- 3.4.1 Corn Stover -- 3.4.2 Wheat Straw -- 3.4.3 Rice Straw -- 3.4.4 Sugarcane Bagasse -- 3.4.5 Barley Straw -- 3.5 Forestry Residue, Logging and Mill Residue -- 3.6 Grass Feedstocks -- 3.6.1 Switchgrass -- 3.6.2 Miscanthus Grass -- 3.6.3 Prairie Cordgrass -- 3.6.4 Arundo Donax or Giant Reed -- 3.6.5 Reed Canary Grass -- 3.6.6 Alfalfa -- 3.6.7 Other Grasses -- 3.7 Purpose-Grown Trees as Feedstock -- 3.7.1 Poplar -- 3.7.2 Willows -- 3.7.3 Pines -- 3.7.4 Eucalyptus -- 3.8 Municipal and Other Waste as Feedstock for Cellulosic Ethanol -- 3.8.1 Municipal Waste Feedstock Utilizing Cellulosic Ethanol Plants -- References -- Part 2 Aqueous Phase Biomass Hydrolysis Route -- 4 Challenges in Aqueous-Phase Biomass Hydrolysis Route: Recalcitrance.

4.1 Introduction - Two Ways to Produce Cellulosic Ethanol -- 4.2 Challenges in Aqueous-Phase Biomass Hydrolysis -- 4.3 Structure of Plant Cells and Lignocellulosic Biomass -- 4.4 Major Components of Lignocellulosic Biomass -- 4.4.1 Cellulose -- 4.4.2 Hemicellulose -- 4.4.3 Lignin -- 4.5 Cellulose Recalcitrance -- References -- 5 Pretreatment of Lignocellulosic Biomass -- 5.1 Introduction -- 5.2 Different Categories of Pretreatment Methods -- 5.3 Physical Pretreatment -- 5.3.1 Machinery Used in Physical Pretreatment -- 5.3.2 Physical Pretreatment of Woody Biomass -- 5.4 Physicochemical Pretreatment -- 5.4.1 Steam Explosion or Steam Pretreatment -- 5.4.2 Liquid Hot Water (LHW) Pretreatment -- 5.4.3 Ammonia-Based Pretreatments Method -- 5.4.4 Ammonia Fiber/Freeze Explosion (AFEX) -- 5.4.5 Ammonia Recycle Percolation (ARP) -- 5.4.6 Soaking Aqueous Ammonia (SAA) -- 5.4.7 Supercritical Carbon Dioxide Pretreatment -- 5.4.8 Organosolv Pretreatment -- 5.4.9 Ionic Liquid (IL) Pretreatment -- 5.4.10 N-Methyl Morpholine N-Oxide (NMMO) Pretreatment -- 5.5 Chemical Pretreatment -- 5.5.1 Aqueous Acid Pretreatment -- 5.5.2 Sulfur Dioxide Pretreatment -- 5.5.3 Alkaline Pretreatment Methods -- 5.5.4 Lime Pretreatment -- 5.5.5 Aqueous Alkali Hydroxide-Based Pretreatments -- 5.5.6 Wet Oxidation Pretreatment -- 5.5.7 Ozone Pretreatment -- 5.6 Biological Pretreatment -- 5.7 Conclusion -- References -- 6 Enzymatic Hydrolysis of Cellulose and Hemicellulose -- 6.1 Introduction -- 6.2 Enzymatic Actions on Lignocellulosic Biomass -- 6.3 Enzymatic Hydrolysis of Cellulose -- 6.3.1 Cellulose Hydrolysis Mechanisms -- 6.3.2 Cellulase Preparation Methods -- 6.3.3 In-Plant Cellulase Production -- 6.3.4 Immobilization of Cellulases -- 6.3.5 Immobilization on Nanoparticles -- 6.4 Enzymatic Hydrolysis of Hemicellulose -- 6.4.1 Hemicellulose Hydrolysis Mechanisms.

6.4.2 Hemicellulases Preparation Methods -- 6.5 Future Directions in Enzymatic Cellulose Hydrolysis Research -- References -- 7 Acid Hydrolysis of Cellulose and Hemicellulose -- 7.1 Introduction -- 7.2 Concentrated Acid Hydrolysis -- 7.2.1 Arkenol Process -- 7.2.2 Mechanism of the Concentrated Acid Hydrolysis -- 7.2.3 Recent Advances in the Concentrated Acid Process -- 7.3 Dilute Acid Hydrolysis -- 7.3.1 Percolation Reactors -- 7.3.2 Plug Flow Reactors -- 7.3.3 Bed-Shrinking Flow through Reactors -- 7.3.4 Comparisons and Modeling Studies on Hydrolysis Reactors -- 7.3.5 Recent Advances in Dilute Acid Process - Different Acids -- 7.4 Ionic Liquid-Based Direct Acid Hydrolysis -- 7.4.1 Acid Catalysts in Ionic Liquid Solutions -- 7.4.2 Solid Acid Catalysts in Ionic Liquid Solutions -- 7.4.3 Acid Group Functionalized Ionic Liquids -- 7.5 Solid Acid Hydrolysis -- 7.5.1 Zeolites -- 7.5.2 Cation-Exchange Resins -- 7.5.3 Metal Oxide Supported Solid Acid Catalysts -- 7.5.4 Carbonaceous Solid Supported Acid Catalysts -- References -- 8 Fermentation I - Microorganisms -- 8.1 Introduction -- 8.2 Detoxification of Lignocellulosic Hydrolyzate -- 8.3 Separate Hydrolysis and Fermentation (SHF) -- 8.4 Microorganisms Used in the Fermentation -- 8.5 Fermentation Using Yeasts -- 8.5.1 Genetic Modification of Yeasts -- 8.6 Fermentation Using Bacteria -- 8.6.1 Genetic Modifications of Bacteria -- 8.7 Simultaneous Saccharification and Fermentation (SSF) -- 8.7.1 SSF Using a Mixture of Saccharification and Fermentation Microorganisms -- 8.7.2 SSF Using Microorganisms that Can Do both Saccharification and Fermentation or Consolidated Bio-Processing (CBP) -- 8.7.3 Heterologous Expression of Cellulase Genes in Yeast S. cerevisiae for the Development of CBP -- 8.7.4 Surface-Engineered Yeast Strains for the CBP -- 8.7.5 Cell Recycle Batch Fermentation (CRBF).

8.7.6 Comparison of Different Fermentation Configurations -- 8.8 Immobilization of Yeast -- References -- 9 Fermentation II - Fermenter Configuration and Design -- 9.1 Introduction -- 9.2 Batch Fermentation -- 9.2.1 Examples of Batch Fermentation -- 9.3 Fed-Batch Fermentation -- 9.3.1 Advantages and Disadvantages of Fed-Batch Fermentation -- 9.3.2 Examples of Fed-Batch Fermentation -- 9.3.3 Types of Fed-Batch Fermentation Reactors -- 9.3.4 Fixed Volume Fed-batch Reactors -- 9.3.5 Variable Volume Fed-batch Reactors -- 9.3.6 Control Techniques for Fed-Batch Fermentation -- 9.4 Continuous Fermentation -- 9.4.1 Types of Continuous Fermentation Reactors -- 9.4.2 Advantages of Continuous Fermentation -- 9.4.3 Examples of Continuous Fermentation -- 9.4.4 Continuous Fermentation Using Immobilized Microorganisms -- 9.5 New Directions in Fermenter Configuration and Design -- References -- 10 Separation and Uses of Lignin -- 10.1 Introduction -- 10.2 Structure of Lignin -- 10.3 Separation of Lignin in the Cellulosic Ethanol Process -- 10.4 Physical and Chemical Properties of Lignin -- 10.5 Applications of Lignin -- 10.5.1 Lignin-Based Phenol Formaldehyde Resins -- 10.5.2 Lignin-Phenol co-Polymers as Adhesives -- 10.5.3 Lignin-Polyolefin Blends -- 10.5.4 Lignin-Polyvinyl Polymer Blends -- 10.5.5 Lignin-Rubber Blends -- 10.5.6 Preparation of Vanillin from Lignin -- 10.5.7 Synthesis of Vanillin-Based Polymers -- References -- Part 3 Biomass Gasification Route -- 11 Biomass Pyrolysis and Gasifier Designs -- 11.1 Introduction -- 11.2 Chemistry of the Conversion of Biomass to Syngas -- 11.2.1 Composition of the Syngas -- 11.3 Classifications of Biomass Gasifiers -- 11.4 Fixed-Bed Gasifier -- 11.5 Fluidized-Bed Gasifier -- 11.6 Bubbling Fluidized-Bed (BFB) Gasifier -- 11.7 Circulating Fluidized-Bed (CFB) Gasifier -- 11.8 Allothermal Dual Fluidized-Bed (DFB) Gasifier.

11.9 Entrained-Flow Gasifier -- 11.10 Syngas Cleaning -- 11.10.1 Hot Gas Cleaning -- 11.10.2 Inertial Separation Using Cyclone -- 11.10.3 Gas Cleaning Filters -- 11.10.4 Electrostatic Separations -- 11.10.5 Cold Wet Gas Cleaning or Conventional Gas Cleaning -- 11.11 Tar Control and Treatment Methods -- References -- 12 Conversion of Syngas to Ethanol Using Microorganisms -- 12.1 Introduction -- 12.1.1 Advantages and Disadvantages of Biocatalysis -- 12.2 Metabolic Pathways -- 12.3 Microorganisms Used in Syngas Fermentation -- 12.4 Biochemical Reactions in Syngas Fermentation -- 12.5 The Effects of Operation Parameters on Ethanol Yield -- 12.5.1 The Effect of Culture Media -- 12.5.2 Effect of Medium pH -- 12.5.3 The Effect of Carbon Source -- 12.5.4 The Effect of Inhibitors and Impurities in Syngas -- 12.5.5 The Effect of Gas Pressure -- 12.6 Syngas Fermentation Reactors -- 12.7 Industrial-Scale Syngas Fermentation and Commercialization -- References -- 13 Conversion of Syngas to Ethanol Using Chemical Catalysts -- 13.1 Introduction -- 13.2 Homogeneous Catalysts -- 13.3 Introduction to Heterogeneous Catalysts -- 13.4 Heterogeneous Catalyst Types -- 13.5 Rhodium-Based Catalysts -- 13.5.1 Studies on Reduction of CO and CO2 -- 13.5.2 Role of Promoters -- 13.5.3 Role of Catalyst Support -- 13.5.4 New Catalyst Supports -- 13.6 Copper-Based Modified Methanol Synthesis Catalysts -- 13.6.1 Copper Nanoparticles-Based Catalysts -- 13.7 Modified Fischer-Tropsch Type Catalysts -- 13.8 Molybdenum-Based Catalysts -- 13.9 Catalyst Selection -- References -- Part 4 Processing of Cellulosic Ethanol -- 14 Distillation of Ethanol -- 14.1 Introduction -- 14.2 Distillation of the Beer -- 14.3 How Distillation Works -- 14.4 Conventional Ethanol Distillation System -- 14.4.1 Beer Column or Stripping Column -- 14.4.2 Rectifying or Refining Column.

14.4.3 Side Stripper Column.
Abstract:
Comprehensive coverage on the growing science and technology of producing ethanol from the world's abundant cellulosic biomass The inevitable decline in petroleum reserves and its impact on gasoline prices, combined with climate change concerns, have contributed to current interest in renewable fuels. Bioethanol is the most successful renewable transport fuel-with corn and sugarcane ethanol currently in wide use as blend-in fuels in the United States, Brazil, and a few other countries. However, there are a number of major drawbacks in these first-generation biofuels, such as their effect on food prices, net energy balance, and poor greenhouse gas mitigation. Alternatively, cellulosic ethanol can be produced from abundant lignocellulosic biomass forms such as agricultural or municipal wastes, forest residues, fast growing trees, or grasses grown in marginal lands, and should be producible in substantial amounts to meet growing global energy demand. The Handbook of Cellulosic Ethanol covers all aspects of this new and vital alternative fuel source, providing readers with the background, scientific theory, and recent research progress in producing cellulosic ethanol via different biochemical routes, as well as future directions. The seventeen chapters include information on: Advantages of cellulosic ethanol over first-generation ethanol as a transportation fuel Various biomass feedstocks that can be used to make cellulosic ethanol Details of the aqueous phase or cellulolysis route, pretreatment, enzyme or acid saccharification, fermentation, simultaneous saccharification fermentation, consolidated bioprocessing, genetically modified microorganisms, and yeasts Details of the syngas fermentation or thermochemical route, gasifiers, syngas cleaning, microorganisms for syngas fermentation, and chemical catalysts for syngas-to-ethanol conversion

Distillation and dehydration to fuel-grade ethanol Techno-economical aspects and the future of cellulosic ethanol Readership Chemical engineers, chemists, and technicians working on renewable energy and fuels in industry, research institutions, and universities. The Handbook can also be used by students interested in biofuels and renewable energy issues.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Electronic Access:
Click to View
Holds: Copies: