Cover image for Photonics Volume 1 : Fundamentals of Photonics and Physics.
Photonics Volume 1 : Fundamentals of Photonics and Physics.
Title:
Photonics Volume 1 : Fundamentals of Photonics and Physics.
Author:
Andrews, David L.
ISBN:
9781119009696
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (489 pages)
Series:
A Wiley-Science Wise Co-Publication
Contents:
Photonics -- Contents -- List of Contributors -- Preface -- 1 A Photon in Perspective -- 1.1 Introduction -- 1.2 Foundations -- 1.2.1 Modes of Optical Propagation -- 1.2.2 Quantum Foundations -- 1.2.3 Developing Quantum Optics -- 1.2.4 Boson Statistics -- 1.3 Medium Issues -- 1.3.1 Speed of Propagation -- 1.3.2 Momentum -- 1.3.3 Directedness of Propagation -- 1.4 Photon Localization and Wavefunction -- 1.4.1 Localization -- 1.4.2 Wavefunction -- 1.5 The Quantum Vacuum and Virtual Photons -- 1.5.1 Vacuum Fluctuations -- 1.5.2 Virtual Photons in Action -- 1.5.3 Virtual Photon Propagation -- 1.5.4 Casimir Forces -- 1.6 Structured Light -- 1.6.1 Complex Modes and Vector Beams -- 1.6.2 Chirality and Angular Momentum -- 1.6.3 Multipole Emission -- 1.6.4 Information in a Photon -- 1.7 Photon Number Fluctuations and Phase -- 1.7.1 Coherence and Fluctuations -- 1.7.2 Phase -- 1.8 The Reality of Photonics -- Acknowledgments -- References -- 2 Coherence and Statistical Optics -- 2.1 Introduction -- 2.2 Classical Theory of Optical Coherence in the Space-Time Domain -- 2.2.1 Degree of Coherence in the Space-Time Domain -- 2.2.2 Complete Spatial Coherence in the Time Domain -- 2.3 Classical Theory of Optical Coherence in the Space-Frequency Domain -- 2.3.1 Degree of Coherence in the Space-Frequency Domain -- 2.3.2 Complete Spatial Coherence in the Frequency Domain -- 2.4 Cross-Spectrally Pure Optical Fields -- 2.4.1 Application of Coherence Theory in Structure Determination of Random Media -- 2.5 Polarization Properties of Stochastic Beams -- 2.5.1 Matrix Formulation of the Theory of Polarization -- 2.5.2 Unpolarized, Polarized, and Partially Polarized Light Beam -- 2.5.3 Statistical Similarity and Complete Polarization -- 2.5.4 Polarization Properties of Light in the Frequency Domain.

2.5.5 Remarks on Polarization Properties of Light in Time and Frequency Domains -- 2.6 Remarks on Partially Coherent and Partially Polarized Beams -- 2.7 Basics of Quantum Theory of Optical Coherence -- 2.8 Concluding Remarks -- Acknowledgments -- References -- 3 Light Beams with Spatially Variable Polarization -- 3.1 Introduction -- 3.2 POINCARÉ Modes of Beams -- 3.2.1 States of Polarization -- 3.2.2 Spatial Modes -- 3.2.3 Poincaré Modes -- 3.3 Experimental Approaches -- 3.4 Polarization Singularities -- 3.5 Conclusion -- Acknowledgments -- References -- 4 Quantum Optics -- 4.1 Introduction -- 4.2 Fundamentals -- 4.2.1 Quantum Mechanics of the Harmonic Oscillator -- 4.2.2 The Electromagnetic Field -- 4.2.3 Phase-Space Representations of the Quantum State -- 4.2.4 Two-State System or Qubit -- 4.2.5 Electric Dipole Interaction -- 4.3 Open Systems: Inputs and Outputs -- 4.3.1 Heisenberg Picture -- 4.3.2 Schrödinger Picture -- 4.3.3 Quantum Regression -- 4.3.4 Quantum Jumps -- 4.4 Photon Counting -- 4.4.1 Basics -- 4.4.2 Classical and Nonclassical Fields -- 4.4.3 Homodyne/Heterodyne Detection -- 4.4.4 Quantum Trajectory Theory -- 4.5 Cavity and Circuit QED -- 4.5.1 Jaynes-Cummings Model -- 4.5.2 Jaynes-Cummings Model with Decay -- 4.5.3 Strong Coupling -- References -- 5 Squeezed light -- 5.1 What is squeezed light? -- 5.1.1 Single-Mode Squeezed Light -- 5.1.2 Two-Mode Squeezed Light -- 5.2 Salient features of squeezed states -- 5.2.1 The Squeezing Operator -- 5.2.2 Photon Number Statistics -- 5.2.3 Interconversion Between Single- and Two-Mode Squeezing -- 5.2.4 Squeezed Vacuum and Squeezed Light -- 5.2.5 Effect of Losses -- 5.3 Detection -- 5.3.1 Balanced Homodyne Detection -- 5.3.2 Time-Domain Approach -- 5.3.3 Frequency-Domain Approach -- 5.4 Preparation -- 5.4.1 Via Parametric Down-Conversion -- 5.4.2 In Atomic Ensembles -- 5.4.3 In Fibers.

5.5 Applications in quantum information -- 5.5.1 Quantum-Optical State Engineering -- 5.5.2 Continuous-Variable Quantum Teleportation -- 5.6 Applications in quantum metrology -- 5.7 Conclusion and outlook -- References -- 6 Electromagnetic Theory of Materials -- 6.1 Preamble -- 6.2 Macroscopic Viewpoint -- 6.2.1 Maxwell Postulates -- 6.2.2 Constitutive Relations -- 6.2.3 Time/Frequency Domain -- 6.3 Constitutive Dyadics -- 6.3.1 Constraints -- 6.3.2 Specializations -- 6.4 Linear Materials -- 6.4.1 Isotropic Materials -- 6.4.2 Anisotropic Materials -- 6.4.3 Bianisotropic Materials -- 6.4.4 Nonhomogeneous Materials -- 6.5 Nonlinear Materials -- 6.5.1 Nonlinearity of Quantum Electrodynamics Vacuum -- 6.6 Closing Remarks -- References -- 7 Surface and Cavity Nanophotonics -- 7.1 Introduction -- 7.2 Basic Formalism -- 7.2.1 Hamiltonian and Essential States -- 7.2.2 Single Interface-the Simplest Open Cavity -- 7.3 Dipole Emitter Near Edge -- 7.3.1 Normal Modes -- 7.3.2 Single-Emitter De-excitation Rate -- 7.3.3 Dipole Moment Normal to the z-Plane. -- 7.3.4 Dipole Along the y-Axis -- 7.4 Quantum Correlations -- 7.5 Entanglement -- 7.6 Wedge Cavities -- 7.7 Conclusions -- Acknowledgments -- References -- 8 Quantum Electrodynamics -- 8.1 Introduction -- 8.2 Molecular QED: Principle of Minimal Electromagnetic Coupling -- 8.3 Multipolar Hamiltonian -- 8.4 One-Photon Absorption -- 8.5 Emission of Light: Spontaneous and Stimulated Processes -- 8.6 Linear Light-Scattering: The Kramers-Heisenberg Dispersion Formula -- 8.7 Chiroptical Effects -- 8.8 Two-Photon Absorption -- 8.9 Nonlinear Light-Scattering: Sum-Frequency and Harmonic Generation -- 8.10 Resonance Energy Transfer -- 8.11 van der Waals Dispersion Energy -- 8.12 Radiation-Induced Interparticle Forces -- 8.13 Summary and Outlook -- References -- 9 Multiphoton Processes -- 9.1 Introduction.

9.1.1 Historical Perspective -- 9.2 Molecular Two-Photon Absorption: Basic Principles -- 9.2.1 The Nonlinear Optical Polarization -- 9.2.2 The Two-Photon Absorption Cross-Section -- 9.3 Molecular Two-Photon Fluorescence -- 9.3.1 Polarization Dependence of Two-Photon Absorption -- 9.3.2 Two-Photon Excited Fluorescence -- 9.3.3 Two- and Multiphoton Absorption in Free Rotors -- 9.4 Applications and Future Prospects -- 9.5 Conclusions -- Acknowledgments -- References -- 10 Orbital Angular Momentum -- 10.1 Historical Introduction -- 10.2 Creating Beams with OAM -- 10.3 Micro-manipulation through the use of OAM -- 10.4 Beam Transformations -- 10.5 Measuring Beams with OAM -- 10.6 OAM in Classical Imaging -- 10.7 OAM in Nonlinear and Quantum Optics -- 10.8 Conclusions -- References -- 11 Introduction to Helicity and Electromagnetic Duality Transformations in Optics -- 11.1 Introduction -- 11.2 Symmetries and Operators -- 11.3 Electromagnetic Duality -- 11.4 Optical Helicity and Electromagnetic Duality Symmetry -- 11.5 Duality Symmetry in Piecewise Homogeneous and Isotropic Media -- 11.6 Applications of the Framework -- 11.6.1 Spin to Orbit Angular Momentum Transfer -- 11.6.2 Bessel Beams with Well Defined Angular Momentum and Helicity -- 11.6.3 Optical Vortices in Focusing -- 11.6.4 Optical Vortices in Scattering -- 11.6.5 Kerker Conditions -- 11.7 Conclusions -- References -- 12 Slow and Fast Light -- 12.1 Introduction -- 12.2 Mechanisms of Slow Light -- 12.2.1 Material Slow Light -- 12.2.2 Structural Slow Light -- 12.3 Physics with Slow and Fast Light -- 12.3.1 Common Slow-Light Processes -- 12.3.2 Superluminal and Backward Light -- 12.3.3 Kinetics Properties and Photon Drag -- 12.3.4 Enhancement of Nonlinearity -- 12.4 Some Applications of Slow and Fast Light -- 12.4.1 Optical Tunable Delay Lines -- 12.4.2 Optical Memories -- 12.4.3 SLIDAR.

12.4.4 Interferometric Spectrometers -- 12.5 Fundamental Limits on Slow Light -- 12.5.1 Limits for Optical Delay Lines -- 12.5.2 Limits for Interferometric Spectroscopy -- References -- 13 Attosecond Physics: Attosecond Streaking Spectroscopy of Atoms and Solids -- 13.1 Introduction -- 13.1.1 The Advent of Attosecond Physics -- 13.1.2 Ultrashort Laser Pulses Exert Well-Defined Electromagnetic Forces -- 13.1.3 Attosecond Light Pulses Through High Harmonic Generation -- 13.1.4 Time-Resolving Basic Optoelectronic Phenomena on an Attosecond Scale -- 13.2 Time-Resolved Photoemission from Atoms -- 13.2.1 Emission and Characterization of Photoelectron Wave Packets -- 13.2.2 Influence of the IR Streaking Field on the Photoemission Process -- 13.3 Streaked Photoemission from Solids -- 13.3.1 Principle and Setup for Fs to Sub-Fs Time-Resolved Experiments on Surfaces -- 13.3.2 Photoemission Delay Measured for Tungsten Surfaces -- 13.3.3 Theoretical Modeling of Attosecond Photoemission from Tungsten -- 13.3.4 Modeling of Photoemission Delays in Tungsten -- 13.3.5 Attosecond Photoemission from Rhenium Surfaces -- 13.3.6 Attosecond Photoemission from Magnesium Surfaces -- 13.3.7 Toward Time Resolving Collective Electrons Dynamics: Probing Plasmon-Response Effects in Streaked Photoelectron Spectra -- 13.4 Attosecond Streaking from Nanostructures -- 13.4.1 Instantaneous Versus Ponderomotive Streaking -- 13.4.2 Modeling of the Attosecond Streaking from Metal Nanoparticles -- 13.4.3 Attosecond Nanoplasmonic Microscopy -- 13.5 Conclusions -- Acknowledgments -- References -- Index -- Supplemental Images -- EULA.
Abstract:
Covers modern photonics accessibly and discusses the basic physical principles underlying all the applications and technology of photonics.This volume covers the basic physical principles underlying the technology and all applications of photonics from statistical optics to quantum optics. The topics discussed in this volume are: Photons in perspective; Coherence and Statistical Optics; Complex Light and Singular Optics; Electrodynamics of Dielectric Media; Fast and slow Light; Holography; Multiphoton Processes; Optical Angular Momentum; Optical Forces, Trapping and Manipulation; Polarization States; Quantum Electrodynamics; Quantum Information and Computing; Quantum Optics; Resonance Energy Transfer; Surface Optics; Ultrafast Pulse Phenomena. Comprehensive and accessible coverage of the whole of modern photonics Emphasizes processes and applications that specifically exploit photon attributes of light Deals with the rapidly advancing area of modern optics Chapters are written by top scientists in their field Written for the graduate level student in physical sciences; Industrial and academic researchers in photonics, graduate students in the area; College lecturers, educators, policymakers, consultants, Scientific and technical libraries, government laboratories, NIH.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: