Cover image for Optimization of Structural and Mechanical Systems.
Optimization of Structural and Mechanical Systems.
Title:
Optimization of Structural and Mechanical Systems.
Author:
Arora, Jasbir S.
ISBN:
9789812779670
Personal Author:
Physical Description:
1 online resource (610 pages)
Contents:
CONTENTS -- Preface -- List of Contributors -- Chapter 1 Introduction to Optimization Jasbir S. Arora -- 1. Introduction -- 2. Optimization Models -- 2.1. Optimization Models: Continuous Variables -- 2.2. Optimization Models: Mixed Variables -- 3. Optimality Conditions for Problem P -- 3.1. Definitions and General Concepts -- 3.2. Optimality Conditions for the Unconstrained Problem -- 3.3. Optimality Conditions for the Constrained Problem -- 3.4. Global Optimality and Convexity -- 3.5. Lagrange Multipliers -- 3.5.1. Changes in Constraint Limit -- 3.5.2. Scaling of Cost Function. -- 3.5.3. Scaling of Constraints -- 4. Basic Concepts Related to Computational Algorithms -- 4.1. A Basic Gradient-based Algorithm -- 4.2. Constraint Normalization -- 4.3. Potential Constraint Strategy -- 4.4. Descent Function -- 4.5. Convergence of an Algorithm -- 4.6. Attributes of a Good Algorithm -- 5. Overview of Computational Algorithms -- 5.1. Gradient-based Algorithms -- 5.1.1. Linearization and Sequential Linear Programming -- 5.1.2. Sequential Quadratic Programming - SQP -- 5.1.3. Augmented Lagrangian Method -- 5.2. Algorithms for Discrete Variable Problems -- 5.3. Multiobjective Optimization -- 5.3.1. Terminology and Basic Concepts -- 5.3.2. Solution Methods -- 5.4. Algorithms for Global Solution -- 5.4.1. Deterministic Methods -- 5.4.2. Stochastic Methods -- 6. Concluding Remarks -- References -- Chapter 2 Optimization of Large Scale Systems José Herskovits, Evandro Goulart and Miguel Aroztegui -- 1. Introduction -- 2. Quasi-Newton Method for Nonlinear Optimization -- 2.1. Limited Memory Quasi-Newton Method -- 2.2. Sparse Quasi-Newton Matrices -- 2.3. Diagonal Quasi-Newton Matrices -- 3. The Feasible Arc Interior Point Algorithm -- 3.1. BFGS updating rule for constrained optimization -- 4. The Internal Linear Systems in FAIPA.

4.1. Solving the primal-dual systems -- 4.2. Solving the dual systems -- 5. Numerical Experiments -- 5.1. Results with a collection of test problems -- 5.2. Experiments with a structural optimization problem -- 6. Conclusions -- Acknowledgments -- References -- Chapter 3 Structural Optimization Using Evolutionary Computation Christopher M. Foley -- 1. Introduction -- 2. Optimization Problems and Complexity -- 3. Fundamentals of Optimal Design Using Evolutionary Computation -- 3.1. Objective Fitness -- 3.2. Genetic Algorithm -- 3.2.1. Individual Representation -- 3.2.2. Selection -- 3.2.3. Recombination -- 3.2.4. Mutation -- 3.2.5. Elitism -- 3.3. Evolution Strategy -- 3.3.1. Multi-Member Non-Recombinative Evolution Strategy -- 3.3.2. Recombinative Evolution Strategy -- 3.3.3. Self-Adaptive Evolution Strategy -- 4. Applications in Structural Engineering -- 4.1. Bridge Maintenance and Management -- 4.2. Structural System and Component Optimization -- 4.2.1. Deterministic Structural Optimization (DSO) -- 4.2.2. Performance-Based Structural Optimization (PBSO) -- 4.2.3. Reliability-Based Structural Optimization (RBSO) -- 4.2.4. Miscellaneous Applications -- 4.3. Topology Optimization of Truss-Type Structures -- 4.4. Structural Control and Supplemental Damping -- 4.5. Damage Detection -- 4.6. Parameter, Model, or Structure Identification -- 4.7. Conceptual Design of Building Systems -- 4.8. Parallel Processing Applications -- 5. Other Sources of Information -- 6. Concluding Remarks -- Acknowledgments -- References -- Chapter 4 Multiobjective Optimization: Concepts and Methods Achille Messac and Anoop A. Mullur -- 1. Introduction to Multiobjective Optimization -- 1.1. Why Multiobjective Optimization? -- 1.2. Scope of the Chapter -- 2. Concept of Pareto Optimality -- 2.1. Multiobjective Optimization Problem Statement -- 2.2. Pareto Optimal Solutions.

2.3. Local and Global Pareto Optimality -- 2.4. The Pareto Frontier -- 2.5. Pareto Frontier in Multiple Dimensions -- 3. Multiobjective Optimization Solution Techniques -- 3.1. Methods Requiring Designer Preferences -- 3.1.1. Weighted Sum -- 3.1.2. Compromise Programming -- 3.1.3. Weighted Min-Max Method -- 3.1.4. Goal Programming -- 3.1.5. Physical Programming -- 3.2. Pareto Set Generation Methods -- 3.2.1. Weighted Criteria Methods -- 3.2.2. o-Constraint Method -- 3.2.3. Normal Boundary Intersection Method -- 3.2.4. Normal Constraint Method -- 3.2.5. Multiobjective Genetic Algorithms -- 3.3. Choosing an Appropriate Solution Approach -- 4. Multiobjective Optimization in Practice -- 4.1. Decision Making Tools -- 4.1.1. Pareto Filtering Techniques -- 4.1.2. Smart Pareto Representation -- 4.2. Objective Function Normalization -- 4.3. Pareto Set Accuracy Metrics -- 5. Applications and Recent Advances in Multiobjective Optimization -- 5.1. Recent Advances -- 6. Summary and Concluding Remarks -- 7. Problems -- References -- Chapter 5 Shape Optimization Tae Hee Lee -- 1. Introduction -- 2. Definition of Shape Optimization Problem -- 3. Shape Optimization Methods -- 3.1. Element Nodal Coordinate Method -- 3.2. Geometric Boundary Method -- 3.2.1. Definition of Shape Design Variable -- 3.2.2. Shape Optimization -- 4. Concluding Remarks -- References -- Chapter 6 Topology Optimization Martin P. Bendsoe and Ole Sigmund -- 1. Introduction -- 2. Problem Setting -- 2.1. The 0-1 Design Problem -- 2.2. Working with a Grey-scale: Interpolation Models -- 2.3. Interpreting Grey-scale: Material Models -- 3. Solution Methods -- 3.1. Computational Framework -- 3.1.1. FEM -- 3.1.2. Sensitivity Analysis -- 3.1.3. Optimization Algorithm -- 3.2. Finer Points -- 3.2.1. Geometry Control -- 3.2.2. Checkerboards -- 3.2.3. Hinges -- 4. Extensions -- 4.1. Geometrical Nonlinearity.

4.1.1. The Importance of Non-linear Modelling -- 4.1.2. Computational Issues -- 4.2. Design of Supports -- 5. Variations of the Theme -- 5.1. Mathematical Programming Issues -- 5.1.1. SAND Formulation -- 5.1.2. Mixed-integer Format -- 5.1.3. Stress Constraints -- 5.1.4. Other Algorithmic Approaches -- 5.2. Design of Articulated Mechanisms -- 5.3. Level-set Methods -- 6. From Theory to Product -- 6.1. Industrial Use of Topology Design -- 6.2. Nano-photonics -- 6.2.1. Wave Propagation Problems -- 6.2.2. A Z-bend in Photonics -- 7. Challenges in the Field -- 7.1. Multiphysics -- 7.2. Algorithms -- 7.3. Defining the Design -- Acknowledgments -- References -- Chapter 7 Shape Design Sensitivity Analysis of Nonlinear Structural Systems Nam Ho Kim -- 1. Introduction -- 2. Design Sensitivity Analysis of Nonlinear Elastic Problems -- 2.1. Total Lagrangian Formulation -- 2.1.1. Incremental Solution Procedure -- 2.1.2. Shape Sensitivity Formulation -- 2.2. Updated Lagrangian Formulation -- 2.2.1. Incremental Solution Procedure -- 2.2.2. Shape Sensitivity Formulation -- 3. Design Sensitivity Analysis of Elastoplastic Problems -- 3.1. Small Deformation Elastoplasticity -- 3.1.1. Incremental Solution Procedure -- 3.1.2. Shape Sensitivity Formulation -- 3.2. Finite Deformation Elastoplasticity -- 3.2.1. Incremental Solution Procedure -- 3.2.2. Shape Sensitivity Formulation -- 4. Design Sensitivity Analysis of Contact Problems -- 4.1. Contact Problems with the Rigid Surface -- 4.2. Design Sensitivity Analysis for Contact Problems -- 5. Numerical Examples -- 5.1. Shape Design Sensitivity Analysis of the Windshield Wiper Problem24 -- 5.2. Design Sensitivity Analysis of the Deepdrawing Problem54 -- 6. Conclusions and Outlook -- References -- Chapter 8 Optimal Control of Structures Satish Nagarajaiah and Sriram Narasimhan -- 1 Introduction.

2 State Space Representation and Transfer Functions -- 3 Time Domain Methods: LQR and LQG -- 3.1 LQR Method -- 3.2 Optimal Estimation -- 3.3 LQG Method -- 4 Control in the Frequency Domain -- 4.1 H2 and H∞ Norms -- 4.2 Frequency Domain Representation -- 4.3 Equivalence of LQG and H2 Optimal Control -- 5 H∞ Optimal Control -- 6 A Brief note on Robustness of H2 and H∞ Methods -- 7 Concluding Remarks -- 8 Acknowledgments -- References -- Chapter 9 Optimization of Systems for Acoustics Ashok D. Belegundu and Michael D. Grissom -- 1. Introduction -- 2. Definitions and Introductory Concepts -- 3. Optimization Problem Formulation -- 3.1. Objective Function Formulation -- 3.2. Procedure for Optimal Design of Quiet Structures -- 4. Governing Equations and Solution Methods -- 4.1. Vibration Analysis of Base Structure (Without Modifications) -- 4.2. Analysis of Modified Structure by the Impedance Method -- 4.3. A Disadvantage with the Impedance Method For Estimating Broadband Response -- 4.4. Reduced Eigenvalue Reanalysis Method -- 4.5. Sound Power Calculations -- 4.6. Determination of Initial Modal Participation Factors -- 5. Non-gradient Optimizers Used -- 6. Selected Example Problems -- 6.1. Optimization of a Half-Cylindrical Shell -- 6.2. Multicriteria Optimization of a Pressure Vessel -- 6.3. Thin Air Cavity Attached to a Structure -- 7. Summary -- Acknowledgments -- Suggested References -- Chapter 10 Design Optimization Under Uncertainty Sankaran Mahadevan -- 1. Introduction -- 2. Reliability Analysis -- 3. Reliability-Based Optimization -- 4. Multi-objective Optimization -- 5. Concluding Remarks -- Acknowledgments -- References -- Chapter 11 Design Optimization with Uncertainty, Life-cycle Performance and Cost Considerations Dan M. Frangopol, Kurt Maute and Min Liu -- 1. Introduction -- 2. Formulation of RBDO Problems -- 3. Reliability Analysis Methods.

3.1. Probabilistic Measures.
Abstract:
Computational optimization methods have matured over the last few years due to extensive research by applied mathematicians and engineers. These methods have been applied to many practical applications. Several general-purpose optimization programs and programs for specific engineering applications have become available to solve particular optimization problems. Written by leading researchers in the field of optimization, this highly readable book covers state-of-the-art computational algorithms as well as applications of optimization to structural and mechanical systems. Formulations of the problems and numerical solutions are presented, and topics requiring further research are also suggested. Sample Chapter(s). Chapter 1: Introduction to Optimization (303 KB). Contents: Introduction to Optimization (J S Arora); Optimization of Large Scale Systems (J Herskovits et al.); Multiobjective Optimization: Concepts and Methods (A Messac & A A Mullur); Shape Optimization (T H Lee); Topology Optimization (M P Bendsoe & O Sigmund); Optimal Control of Structures (S Nagarajaiah & S Narasimhan); Design Optimization Under Uncertainty (S Mahadevan); Multidisciplinary Design Optimization (G-J Park); Meshfree Method and Application to Shape Optimization (J S Chen & N H Kim); Kriging Metamodel Based Optimization (T H Lee & J J Jung); Robust Design Based on Optimization (B M Kwak); Parallel Computations for Design Optimization (S D Rajan & A Damle); Semidefinite Programming for Structural Optimization (M Ohsaki & Y Kanno); and other papers. Readership: Practitioners, researchers and graduate students in optimization of structural and mechanical systems.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: