Cover image for Self-Commutating Converters for High Power Applications.
Self-Commutating Converters for High Power Applications.
Title:
Self-Commutating Converters for High Power Applications.
Author:
Arrillaga, Jos.
ISBN:
9780470682128
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (326 pages)
Contents:
Self-Commutating Converters for High Power Applications -- Contents -- Preface -- 1 Introduction -- 1.1 Early developments -- 1.2 State of the large power semiconductor technology -- 1.2.1 Power ratings -- 1.2.2 Losses -- 1.2.3 Suitability for large power conversion -- 1.2.4 Future developments -- 1.3 Voltage and current source conversion -- 1.4 The pulse and level number concepts -- 1.5 Line-commutated conversion (LCC) -- 1.6 Self-commutating conversion (SCC) -- 1.6.1 Pulse width modulation (PWM) -- 1.6.2 Multilevel voltage source conversion -- 1.6.3 High-current self-commutating conversion -- 1.7 Concluding statement -- References -- 2 Principles of Self-Commutating Conversion -- 2.1 Introduction -- 2.2 Basic VSC operation -- 2.2.1 Power transfer control -- 2.3 Main converter components -- 2.3.1 DC capacitor -- 2.3.2 Coupling reactance -- 2.3.3 The high-voltage valve -- 2.3.4 The anti-parallel diodes -- 2.4 Three-phase voltage source conversion -- 2.4.1 The six-pulse VSC configuration -- 2.4.2 Twelve-pulse VSC configuration -- 2.5 Gate driving signal generation -- 2.5.1 General philosophy -- 2.5.2 Selected harmonic cancellation -- 2.5.3 Carrier-based sinusoidal PWM -- 2.6 Space-vector PWM pattern -- 2.6.1 Comparison between the switching patterns -- 2.7 Basic current source conversion operation -- 2.7.1 Analysis of the CSC waveforms -- 2.8 Summary -- References -- 3 Multilevel Voltage Source Conversion -- 3.1 Introduction -- 3.2 PWM-assisted multibridge conversion -- 3.3 The diode clamping concept -- 3.3.1 Three-level neutral point clamped VSC -- 3.3.2 Five-level diode-clamped VSC -- 3.3.3 Diode clamping generalization -- 3.4 Theying capacitor concept -- 3.4.1 Three-level flying capacitor conversion -- 3.4.2 Multi-level flying capacitor conversion -- 3.5 Cascaded H-bridge conguration -- 3.6 Modular multilevel conversion (MMC) -- 3.7 Summary.

References -- 4 Multilevel Reinjection -- 4.1 Introduction -- 4.2 The reinjection concept in line-commutated current source conversion -- 4.2.1 The reinjection concept in the double-bridge configuration -- 4.3 Application of the reinjection concept to self-commutating conversion -- 4.3.1 Ideal injection signal required to produce a sinusoidal output waveform -- 4.3.2 Symmetrical approximation to the ideal injection -- 4.4 Multilevel reinjection (MLR)-the waveforms -- 4.5 MLR implementation-the combination concept -- 4.5.1 CSC configuration -- 4.5.2 VSC configuration -- 4.6 MLR implementation-the distribution concept -- 4.6.1 CSC configuration -- 4.6.2 VSC configuration -- 4.7 Summary -- References -- 5 Modelling and Control of Converter Dynamics -- 5.1 Introduction -- 5.2 Control system levels -- 5.2.1 Firing control -- 5.2.2 Converter state control -- 5.2.3 System control level -- 5.3 Non-linearity of the power converter system -- 5.4 Modelling the voltage source converter system -- 5.4.1 Conversion under pulse width modulation -- 5.5 Modelling grouped voltage source converters operating with fundamental frequency switching -- 5.6 Modelling the current source converter system -- 5.6.1 Current source converters with pulse width modulation -- 5.7 Modelling grouped current source converters with fundamental frequency switching -- 5.8 Non-linear control of VSC and CSC systems -- 5.9 Summary -- References -- 6 PWM-HVDC Transmission -- 6.1 Introduction -- 6.2 State of the DC cable technology -- 6.3 Basic self-commutating DC link structure -- 6.4 Three-level PWM structure -- 6.4.1 The cross sound submarine link -- 6.5 PWM-VSC control strategies -- 6.6 DC link support during AC system disturbances -- 6.6.1 Strategy for voltage stability -- 6.6.2 Damping of rotor angle oscillation -- 6.6.3 Converter assistance during grid restoration.

6.6.4 Contribution of the voltage source converter to the AC system fault level -- 6.6.5 Control capability limits of a PWM-VSC terminal -- 6.7 Summary -- References -- 7 Ultra High-Voltage VSC Transmission -- 7.1 Introduction -- 7.2 Modular multilevel conversion -- 7.3 Multilevel H-bridge voltage reinjection -- 7.3.1 Steady state operation of the MLVR-HB converter group -- 7.3.2 Addition of four-quadrant power controllability -- 7.3.3 DC link control structure -- 7.3.4 Verification of reactive power control independence -- 7.3.5 Control strategies -- 7.4 Summary -- References -- 8 Ultra High-Voltage Self-Commutating CSC Transmission -- 8.1 Introduction -- 8.2 MLCR-HVDC transmission -- 8.2.1 Dynamic model -- 8.2.2 Control structure -- 8.3 Simulated performance under normal operation -- 8.3.1 Response to active power changes -- 8.3.2 Response to reactive power changes -- 8.4 Simulated performance following disturbances -- 8.4.1 Response to an AC system fault -- 8.4.2 Response to a DC system fault -- 8.5 Provision of independent reactive power control -- 8.5.1 Steady state operation -- 8.5.2 Control structure -- 8.5.3 Dynamic simulation -- 8.6 Summary -- References -- 9 Back-to-Back Asynchronous Interconnection -- 9.1 Introduction -- 9.2 Provision of independent reactive power control -- 9.3 MLCR back-to-back link -- 9.3.1 Determining the DC voltage operating limits -- 9.4 Control system design -- 9.5 Dynamic performance -- 9.5.1 Test system -- 9.5.2 Simulation verification -- 9.6 Waveform quality -- 9.7 Summary -- References -- 10 Low Voltage High DC Current AC-DC Conversion -- 10.1 Introduction -- 10.2 Present high current rectication technology -- 10.2.1 Smelter potlines -- 10.2.2 Load profile -- 10.3 Hybrid double-group conguration -- 10.3.1 The control concept -- 10.3.2 Steady state analysis and waveforms -- 10.3.3 Control system.

10.3.4 Simulated performance -- 10.4 Centre-tapped rectier option -- 10.4.1 Current and power ratings -- 10.5 Two-quadrant MLCR rectication -- 10.5.1 AC system analysis -- 10.5.2 Component ratings -- 10.5.3 Multigroup MLCR rectifier -- 10.5.4 Controller design -- 10.5.5 Simulated performance of an MLCR smelter -- 10.5.6 MLCR multigroup reactive power controllability -- 10.6 Parallel thyristor/MLCR rectication -- 10.6.1 Circuit equations -- 10.6.2 Control system -- 10.6.3 Dynamic simulation and verification -- 10.6.4 Efficiency -- 10.7 Multicell rectication with PWM control -- 10.7.1 Control structure -- 10.7.2 Simulated performance -- 10.8 Summary -- References -- 11 Power Conversion for High Energy Storage -- 11.1 Introduction -- 11.2 SMES technology -- 11.3 Power conditioning -- 11.3.1 Voltage versus current source conversion -- 11.4 The SMES coil -- 11.5 MLCR current source converter based SMES power conditioning system -- 11.5.1 Control system design -- 11.6 Simulation verication -- 11.7 Discussion-the future of SMES -- References -- Index.
Abstract:
For very high voltage or very high current applications, the power industry still relies on thyristor-based Line Commutated Conversion (LCC), which limits the power controllability to two quadrant operation. However, the ratings of self-commutating switches such as the Insulated-Gate Bipolar Transistor (IGBT) and Integrated Gate-Commutated Thyristor (IGCT), are reaching levels that make the technology possible for very high power applications. This unique book reviews the present state and future prospects of self-commutating static power converters for applications requiring either ultra high voltages (over 600 kV) or ultra high currents (in hundreds of kA). It is an important reference for electrical engineers working in the areas of power generation, transmission and distribution, utilities, manufacturing and consulting organizations. All topics in this area are held in this one complete volume. Within these pages, expect to find thorough coverage on:   modelling and control of converter dynamics; multi-level Voltage Source Conversion (VSC) and Current Source Conversion (CSC); ultra high-voltage VSC and CSC DC transmission; low voltage high DC current AC-DC conversion; industrial high current applications; power conversion for high energy storage. This text has a host of helpful material that also makes it a useful source of knowledge for final year engineering students specializing in power engineering, and those involved in postgraduate research.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: