Cover image for Glasses for Photonics.
Glasses for Photonics.
Title:
Glasses for Photonics.
Author:
Yamane, Masayuki.
ISBN:
9780511149122
Personal Author:
Physical Description:
1 online resource (283 pages)
Contents:
Cover -- Half-title -- Title -- Copyright -- Contents -- Preface -- 1 Glass properties -- Introduction -- 1.1 Features of glass as an industrial material -- 1.1.1 Structural features -- 1.1.1.1 Atomic arrangement -- 1.1.1.2 Chemical composition -- 1.1.2 Thermodynamic features -- 1.1.2.1 Glass transition -- 1.1.2.2 Thermal stability and structural relaxation -- 1.1.3 Optical features -- 1.1.3.1 Transparency -- 1.1.3.2 Linear and non-linear refractive index, and dispersion -- 1.2 Classification of glasses by preparation method -- 1.2.1 Glass by melt-quenching technique -- 1.2.2 Glass by chemical vapor deposition -- 1.2.3 Glass by sol-gel process -- 1.3 Important glass systems -- 1.3.1 Oxide glasses -- 1.3.1.1 Silica glass -- 1.3.1.2 Silicate glasses -- 1.3.1.3 Nonsilicate oxide glasses -- 1.3.2 Halide and oxy-halide glasses -- 1.3.2.1 Fluoride glasses -- 1.3.2.2 Oxy-halide glasses -- 1.3.3 Chalcogenide glasses -- 1.4 Secondary treatment of a glass for the development of a special function -- 1.4.1 Thermal treatment -- 1.4.1.1 Crystallization -- 1.4.1.2 Precipitation of nano-particles -- 1.4.1.3 Phase separation -- 1.4.2 Ion exchange -- References -- 2 Gradient index glass -- Introduction -- 2.1 Applications -- 2.2 Design of radial gradient index profiles -- 2.3 Parameters for fabrication of index gradient -- 2.3.1 Gradient index profile -- 2.3.2 Maximum index difference -- 2.3.3 Chromatic property -- 2.3.4 Stress -- 2.4 Materials and fabrication techniques -- 2.4.1 Ion exchange -- 2.4.1.1 Conventional ion-exchange technique -- 2.4.1.2 Modified ion-exchange technique -- 2.4.2 Molecular stuffng technique -- 2.4.3 Sol-gel technique -- 2.4.3.1 Partial leaching technique -- 2.4.3.2 Interdiffusion technique -- 2.4.4 Comparison between various fabrication techniques -- 2.5 Spherical gradient index lens -- References -- 3 Laser glass -- Introduction.

3.1 Fundamentals of laser physics -- 3.1.1 Stimulated emission [2, 3] -- 3.1.2 Cross section [3] -- 3.1.3 Creation of a population inversion [2, 3] -- 3.1.3.1 Population inversion -- 3.1.3.2 Three-level system -- 3.1.3.3 Four-level system -- 3.1.4 Laser oscillation by resonant cavity [1-3] -- 3.1.5 Active ions for laser glasses -- 3.1.6 Laser parameters and their host dependence [4, 13-16, 19, 20] -- 3.1.7 Nonradiative relaxation [4, 13, 15, 17] -- 3.1.7.1 Multiphonon relaxation [4, 13, 15] -- 3.1.7.2 Co-operative relaxation [4, 13, 17] -- 3.2 Bulk laser glasses -- 3.2.1 Compositional dependence of laser parameters of Nd3+-doped glasses -- 3.2.2 Nonradiative relaxation of rare-earth ions in glasses -- 3.2.3 Properties of practical laser glasses -- 3.3 Fiber lasers and amplifiers -- 3.3.1 General description of fiber laser -- 3.3.1.1 History -- 3.3.1.2 Benefits of lasers in fiber form -- 3.3.1.3 Fabrication techniques for fiber lasers -- 3.3.2 Fiber amplifiers -- 3.3.2.1 General descriptions [8, 64, 67] -- 3.3.2.2 1.55 µm amplification in Er3+-doped fiber [32, 65] -- 3.3.2.3 1.3 µm amplification in Nd3+-doped fiber -- 3.3.2.4 1.3 µm amplification in Pr3+-doped fiber -- 3.3.2.5 1.3 µm amplification in Dy3+-doped glasses -- 3.3.3 Fiber laser oscillators -- 3.3.4 Recent progress -- 3.4 Waveguide lasers and amplifiers -- 3.4.1 Fabrication of channel waveguide structure -- 3.4.2 Lasing characteristics -- 3.4.2.1 Nd3+-doped waveguide laser -- 3.4.2.2 Er3+-doped waveguide laser -- 3.4.2.3 Other rare-earth-doped waveguide lasers -- 3.4.3 Amplification characteristics -- 3.4.3.1 Nd3+-doped waveguide amplifier -- 3.4.3.2 Er3+-doped waveguide amplifier -- 3.4.4 Devices based on glass waveguide lasers -- References -- 4 Nonlinear optical glass -- Introduction -- 4.1 Fundamentals of nonlinear optics and applications.

4.1.1 General description of nonlinear polarization -- 4.1.2 Optical nonlinearity of the medium -- 4.1.3 Measurement of nonlinear optical properties -- 4.1.3.1 Degenerate four-wave mixing (DFWM) [13, 14] -- 4.1.3.2 Forward DFWM -- 4.1.3.3 Pump-probe technique [18] -- 4.1.3.4 Maker fringe method (THG method) [19, 20] -- 4.1.3.5 Z-scan method [23, 24] -- 4.1.4 Applications of optical nonlinear materials -- 4.2 Nonresonant nonlinear glasses -- 4.2.1 Nonlinearity of dielectric materials -- 4.2.2 BGO model [35] for nonresonant optical nonlinearities -- 4.2.3 Lines' model for nonresonant optical nonlinearities -- 4.2.4 Nuclear contributions -- 4.2.5 Nonlinear optical properties of nonresonant nonlinear glasses -- 4.2.5.1 Nonlinear refractive index -- 4.2.5.2 Nonlinear response time -- 4.2.5.3 Applications -- 4.3 Semiconductor-doped glasses -- 4.3.1 Fundamentals of semiconductors -- 4.3.1.1 Band theory of semiconductor [99-102] -- 4.3.1.2 Optical properties of semiconductors [2, 101-106] -- 4.3.2 Linear optical properties of semiconductor-doped glasses -- 4.3.3 Nonlinear optical susceptibilities of the strong confinement case -- 4.3.4 Nonlinear response time in the strong confinement case -- 4.3.4.1 Three-level system -- 4.3.4.2 Intensity-dependent response -- 4.3.5 Photodarkening effect -- 4.3.5.1 Photodarkening mechanisms -- 4.3.5.2 Origin of the trap levels -- 4.3.6 Nonlinear optical properties in the weak confinement case -- 4.3.6.1 Excitonic enhancement of…in microcrystallite -- 4.3.6.2 Excitonic optical nonlinearity in semiconductor-doped glasses -- 4.3.7 Fabrication techniques -- 4.3.8 Applications of semiconductor-doped glasses -- 4.4 Metal-doped glasses -- 4.4.1 Fundamentals of optical properties of metal -- 4.4.1.1 Bulk metal (Drude's theory) -- 4.4.1.2 Small metal particles (mean free path theory) [213, 214, 216, 217].

4.4.1.3 Composite materials [213, 214, 216-218] -- 4.4.2 Optical nonlinear mechanisms of metal-doped composite materials -- 4.4.2.1 Local electric field effect (dielectric confinement) [218, 223-225] -- 4.4.2.2 Quantum mechanical effect (quantum confinement) [224-227] -- 4.4.3 Nonlinear optical properties of metal-doped glasses -- 4.4.3.1 Nonlinear susceptibility… -- 4.4.3.2 Nonlinear susceptibility of metal particle… -- 4.4.3.3 Response time -- 4.4.3.4 Figure of merit -- 4.4.4 Fabrication techniques -- 4.5 Comparisons of optical nonlinearities of various nonlinear glass materials -- References -- 5 Magneto-optical glass -- Introduction -- 5.1 Magnetic properties of materials -- 5.1.1 Origin of magnetics of materials -- 5.1.1.1 Permanent magnetic dipoles [1, 2] -- 5.1.1.2 Effect of a magnetic field on an atom [1] -- 5.1.2 Macroscopic description of the magnetic properties of materials [1, 2] -- 5.1.2.1 Magnetization -- 5.1.2.2 Diamagnetic materials -- 5.1.2.3 Paramagnetic materials -- 5.2 Fundamentals of the Faraday effect -- 5.2.1 Origin of Faraday rotation [3-6] -- 5.2.2 Verdet constant [8, 9] -- 5.3 Faraday effect in glasses -- 5.3.1 Diamagnetic glasses -- 5.3.2 Paramagnetic glasses -- 5.3.3 Applications -- 5.3.3.1 Optical isolator (paramagnetic glasses) -- 5.3.3.2 Current sensor (diamagnetic glasses) -- 5 References -- Index.
Abstract:
Authoritative work on photonic glasses by top Japanese authors.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Added Author:
Electronic Access:
Click to View
Holds: Copies: