Cover image for Plant Secondary Metabolites : Occurrence, Structure and Role in the Human Diet.
Plant Secondary Metabolites : Occurrence, Structure and Role in the Human Diet.
Title:
Plant Secondary Metabolites : Occurrence, Structure and Role in the Human Diet.
Author:
Crozier, Alan.
ISBN:
9780470994139
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (386 pages)
Contents:
Plant Secondary Metabolites : Occurrence, Structure and Role in the Human Diet -- Contents -- Contributors -- 1. Phenols, Polyphenols and Tannins: An Overview -- 1.1 Introduction -- 1.2 Classification of phenolic compounds -- 1.2.1 Flavonoids -- 1.2.1.1 Flavonols -- 1.2.1.2 Flavones -- 1.2.1.3 Flavan-3-ols -- 1.2.1.4 Anthocyanidins -- 1.2.1.5 Flavanones -- 1.2.1.6 Isoflavones -- 1.2.2 Non-flavonoids -- 1.2.2.1 Phenolic acids -- 1.2.2.2 Hydroxycinnamates -- 1.2.2.3 Stilbenes -- 1.3 Biosynthesis -- 1.3.1 Phenolics and hydroxycinnamates -- 1.3.2 Flavonoids and stilbenes -- 1.3.2.1 The pathways to flavonoid formation -- 1.3.2.2 Isoflavonoid biosynthesis -- 1.3.2.3 Flavone biosynthesis -- 1.3.2.4 Formation of intermediates in the biosynthesis of flavonols, flavan-3-ols, anthocyanins and proanthocyanidins -- 1.3.2.5 Stilbene biosynthesis -- 1.4 Genetic engineering of the flavonoid biosynthetic pathway -- 1.4.1 Manipulating flavonoid biosynthesis -- 1.4.2 Constraints in metabolic engineering -- 1.5 Databases -- Acknowledgements -- References -- 2. Sulphur-Containing Compounds -- 2.1 Introduction -- 2.2 The glucosinolate-myrosinase system -- 2.3 Chemical diversity of glucosinolates in dietary crucifers -- 2.4 Biosynthesis -- 2.5 Genetic factors affecting glucosinolate content -- 2.6 Environmental factors affecting glucosinolate content -- 2.7 Myrosinases and glucosinolate hydrolysis -- 2.8 Hydr olytic products -- 2.9 Metabolism and detoxification of isothiocyanates -- 2.10 The alliin-alliinase system -- 2.11 Biological activity of sulphur-containing compounds -- 2.12 Anti-nutritional effects in livestock and humans -- 2.13 Beneficial effects of sulphur-containing compounds in the human diet -- 2.13.1 Epidemiological evidence -- 2.13.2 Experimental studies and mechanisms of action -- 2.13.2.1 Inhibition ofPhase I CYP450.

2.13.2.2 Induction of Phase II enzymes -- 2.13.2.3 Antiproliferative activity -- 2.13.2.4 Anti-inflammatory activity -- 2.13.2.5 Reduction in Helicobacter pylori -- References -- 3. Terpenes -- 3.1 Introduction -- 3.2 The biosynthesis of IPP and DMAPP -- 3.2.1 The mevalonic acid pathway -- 3.2.2 The 1-deoxyxylulose 5-phosphate (or methylerythritol 4-phosphate) pathway -- 3.2.3 Interconversion of IPP and DMAPP -- 3.2.4 Biosynthesis of IPP and DMAPP in green plants -- 3.3 Enzymes of terpene biosynthesis -- 3.3.1 Prenyltransferases -- 3.3.2 Mechanism of chain elongation -- 3.3.3 Terpene synthases (including cyclases) -- 3.4 Isoprenoid biosynthesis in the plastids -- 3.4.1 Biosynthesis of monoterpenes -- 3.4.2 Biosynthesis of diterpenes -- 3.4.3 Biosynthesis of carotenoids -- 3.5 Isoprenoid biosynthesis in the cytosol -- 3.5.1 Biosynthesis of sesquiterpenes -- 3.5.2 Biosynthesis of triterpenes -- 3.6 Terpenes in the environment and human health: future prospects -- References -- 4. Alkaloids -- 4.1 Introduction -- 4.2 Benzylisoquinoline alkaloids -- 4.3 Tropane alkaloids -- 4.4 Nicotine -- 4.5 Terpenoid indole alkaloids -- 4.6 Purine alkaloids -- 4.7 Pyrrolizidine alkaloids -- 4.8 Other alkaloids -- 4.8.1 Quinolizidine alkaloids -- 4.8.2 Steroidal glycoalkaloids -- 4.8.3 Coniine -- 4.8.4 Betalains -- 4.9 Metabolic engineering -- Acknowledgement -- References -- 5. Acetylenes and Psoralens -- 5.1 Introduction -- 5.2 Acetylenes in common food plants -- 5.2.1 Distribution and biosynthesis -- 5.2.2 Bioactivity -- 5.2.2.1 Antifungal activity -- 5.2.2.2 Neurotoxicity -- 5.2.2.3 Allergenicity -- 5.2.2.4 Anti-inflammatory, anti-platelet-aggregatory and antibacterial effects -- 5.2.2.5 Cytotoxicity -- 5.2.2.6 Falcarinol and the health-promoting properties of carrots -- 5.3 Psoralens in common food plants -- 5.3.1 Distribution and biosynthesis -- 5.3.2 Bioactivity.

5.3.2.1 Phototoxic effects -- 5.3.2.2 Inhibition of human cytochrome P450 -- 5.3.2.3 Reproductive toxicity -- 5.3.2.4 Antifungal and antibacterial effects -- 5.4 Perspectives in relation to food safety -- References -- 6. Functions of the Human Intestinal Flora: The Use of Probiotics and Prebiotics -- 6.1 Introduction -- 6.2 Composition of the gut microflora -- 6.3 Successional development and the gut microflora in old age -- 6.4 Modulation of the gut microflora through dietary means -- 6.4.1 Probiotics -- 6.4.1.1 Probiotics in relief of lactose maldigestion -- 6.4.1.2 Use of probiotics to combat diarrhoea -- 6.4.1.3 Probiotics for the treatment of inflammatory bowel diseas -- 6.4.1.4 Impact of probiotics on colon cancer -- 6.4.1.5 Impact of probiotics on allergic diseases -- 6.4.1.6 Use of probiotics in other gut disorders -- 6.4.1.7 Future probiotic studies -- 6.4.2 Prebiotics -- 6.4.2.1 Modulation of the gut microflora using prebiotics -- 6.4.2.2 Health effects of prebiotics -- 6.4.3 Synbiotics -- 6.5 In vitro and in vivo measurement of microbial activities -- 6.6 Molecular methodologies for assessing microflora changes -- 6.6.1 Fluorescent in situ hybridization -- 6.6.2 DNA microarrays - microbial diversity and gene expression studies -- 6.6.3 Monitoringg ene expression - subtractive hybridization and in situ PCR/FISH -- 6.6.4 Proteomics -- 6.7 Assessing the impact of dietary modulation of the gut microflora - does it improve health, what are the likelihoods for success, and what are the biomarkers of efficacy? -- 6.8 Justification for the use of probiotics and prebiotics to modulate the gut flora composition -- References -- 7. Secondary Metabolites in Fruits, Vegetables, Beverages and Other Plant-Based Dietary Components -- 7.1 Introduction -- 7.2 Dietary phytochemicals -- 7.3 Vegetables -- 7.3.1 Root crops -- 7.3.2 Onions and garlic.

7.3.3 Cabbage family and greens -- 7.3.4 Legumes -- 7.3.5 Lettuce -- 7.3.6 Celery -- 7.3.7 Asparagus -- 7.3.8 Avocados -- 7.3.9 Artichoke -- 7.3.10 Tomato and related plants -- 7.3.10.1 Tomatoes -- 7.3.10.2 Peppers and aubergines -- 7.3.11 Squashes -- 7.4 Fruits -- 7.4.1 Apples and pears -- 7.4.2 Apricots, nectarines and peaches -- 7.4.3 Cherries -- 7.4.4 Plums -- 7.4.5 Citrus fruits -- 7.4.6 Pineapple -- 7.4.7 Dates -- 7.4.8 Mango -- 7.4.9 Papaya -- 7.4.10 Fig -- 7.4.11 Olive -- 7.4.12 Soft fruits -- 7.4.13 Melons -- 7.4.14 Grapes -- 7.4.15 Rhubarb -- 7.4.16 Kiwi fruit -- 7.4.17 Bananas and plantains -- 7.4.18 Pomegranate -- 7.5 Herbs and spices -- 7.6 Cereals -- 7.7 Nuts -- 7.8 Algae -- 7.9 Beverages -- 7.9.1 Tea -- 7.9.2 Mate -- 7.9.3 Coffee -- 7.9.4 Cocoa -- 7.9.5 Wines -- 7.9.6 Beer -- 7.9.7 Cider -- 7.9.8 Scotch whisky -- 7.10 Databases -- References -- 8. Absorption and Metabolism of Dietary Plant Secondary Metabolites -- 8.1 Introduction -- 8.2 Flavonoids -- 8.2.1 Mechanisms regulating the bioavailability of flavonoids -- 8.2.1.1 Absorption -- 8.2.1.2 Intestinal efflux of absorbed flavonoids -- 8.2.1.3 Metabolism -- 8.2.1.4 Elimination -- 8.2.2 Overview of mechanisms that regulate the bioavailability of flavonoids -- 8.2.3 Flavonoid metabolites identified in vivo and their biological activities -- 8.2.3.1 Approaches to the identification of flavonoid conjugates in plasma and urine -- 8.2.3.2 Flavonoid conjugates identified in plasma and urine -- 8.2.4 Pharmacokinetics of flavonoids in humans -- 8.3 Hydroxycinnamic acids -- 8.4 Gallic acid and ellagic acid -- 8.5 Dihydrochalcones -- 8.6 Betalains -- 8.7 Glucosinolates -- 8.7.1 Hydrolysis of glucosinolates and product formation -- 8.7.2 Analytical methods -- 8.7.3 Absorption of isothiocyanates from the gastrointestinal tract -- 8.7.4 Intestinal metabolism and efflux.

8.7.5 Distribution and elimination -- 8.8 Carotenoids -- 8.8.1 Mechanisms regulating carotenoid absorption -- 8.8.2 Effects of processing -- 8.8.3 Measuring absorption -- 8.8.4 Transport -- 8.8.5 Tissue distribution -- 8.8.6 Metabolism -- 8.8.7 Toxicity -- 8.8.8 Other metabolism -- 8.9 Conclusions -- References -- Index.
Abstract:
Plant secondary metabolites have been a fertile area of chemical investigation for many years, driving the development of both analytical chemistry and of new synthetic reactions and methodologies. The subject is multi-disciplinary with chemists, biochemists and plant scientists all contributing to our current understanding. In recent years there has been an upsurge in interest from other disciplines, related to the realisation that secondary metabolites are dietary components that may have a considerable impact on human health, and to the development of gene technology that permits modulation of the contents of desirable and undesirable components. Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet addresses this wider interest by covering the main groups of natural products from a chemical and biosynthetic perspective with illustrations of how genetic engineering can be applied to manipulate levels of secondary metabolites of economic value as well as those of potential importance in diet and health. These descriptive chapters are augmented by chapters showing where these products are found in the diet, how they are metabolised and reviewing the evidence for their beneficial bioactivity.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: