Cover image for Composite Laminates : Properties, Performance and Applications.
Composite Laminates : Properties, Performance and Applications.
Title:
Composite Laminates : Properties, Performance and Applications.
Author:
Doughett, Anders.
ISBN:
9781611225921
Personal Author:
Physical Description:
1 online resource (520 pages)
Series:
Materials Science and Technologies
Contents:
COMPOSITE LAMINATES: PROPERTIES, PERFORMANCE AND APPLICATIONS -- COMPOSITE LAMINATES: PROPERTIES, PERFORMANCE AND APPLICATIONS -- CONTENTS -- PREFACE -- POST -IMPACT-FATIGUE BEHAVIOUR OF COMPOSITE LAMINATES: CURRENT AND NOVEL TECHNOLOGIES FOR ENHANCED DAMAGE TOLERANCE -- Abstract -- Abbreviations -- Introduction -- Impact Response Polymers -- Impact Response of Fibrous Composites -- Effect of Temperature on Impact Response -- Natural Composites -- Impact-Fatigue -- Fatigue Modelling - Life Predictions -- Delamination Propagation under Fatigue - Models of Prediction -- Ndt Inspection of Initial Damage and Damage Propagation -- Acoustography -- Acoustic and Lamb Waves' Methods -- Electrical Measurements -- Embedding Optical Fibres -- Imaging Techniques -- Ultrasonics -- Other Methods -- Post - Impact Behaviour under Static and Cyclic Loading -- Natural Composites -- Post - Impact Static Behaviour Modelling -- Delamination Growth Prediction (Cyclic) -- Natural Composites -- Models of Prediction -- Technologies for the Reduction or Elimination of Damage Propagation -- z-Pinning -- Stitching -- Matrix Toughening - Interleaving -- Hybrid Composite Systems Incorporating Nano- phases -- Natural Composites -- Applications -- Composite Joints -- Wind Turbines -- Fibre Metal Laminates -- Summary -- References -- COMPOSITE MULTILAYER COATINGSFOR IMPROVED BARRIER PROPERTIESOF PACKAGING BOARD -- Abstract -- Introduction -- Paperboard Laminates -- Barrier Coating of Paperboard -- Water Vapour Barrier -- Oxygen Barrier -- Water Absorption and Surface Hydrophobicity -- Converting of Coated Paperboard -- Barrier Materials for Paperboard -- Synthetic Materials -- Biobased Materials -- Reinforcement of Polymer Coatings -- Experimental -- Substrate -- Coating Materials -- Characterization of Composite Formulations -- Viscosity -- Charge Density.

Surface Tension of Coating Formulations -- Laboratory Coating -- Water Vapour Transmission Rate -- Oxygen Transmission Rate -- Interaction with Liquid Water -- Surface Energy -- Surface Gloss -- Results and Discussion -- Viscosity -- Charge Density and Zeta Potential -- Wettability of Primary and Secondary Layers -- Coat Weight and Thickness -- Barrier Properties -- Water Vapour Barrier -- Oxygen Barrier -- Water Absorption and Surface Hydrophobicity -- Surface Gloss -- Wettability Problems and Effects on Barrier Properties -- Environmental Aspects on Materials Choice -- Conclusion -- References -- SIMULATION OF ULTIMATE STRENGTHOF FIBER-REINFORCED COMPOSITES BY MEANSOF BRIDGING MICROMECHANICS MODEL -- Abstract -- 1. Introduction -- 2. Stress Analysis -- 2.1. Lamina Analysis -- 2.1.1. Basic Formulae of the Bridging Model -- 2.1.2. Determination of Bridging Matrix -- 2.1.3. 2D Bridging Model -- 2.1.4. Thermal Analysis -- 2.2. Laminate Analysis -- 2.2.1. Classical Laminate Theory -- 2.2.2. Thermal Behavior of Laminate -- 2.2.3 Effect of Inter Layer -- 2.2.4. Summary of Stress Analysis -- 3. Strength Prediction -- 3.1. Lamina Strength -- 3.2. Stiffness Discount[18] -- 3.3. Laminate Strength -- 4. Computer Program -- 5. Conclusion -- Acknowledgement -- Appendix A: Original Code of Computer Routine -- Appendix B: Formats of Input Data -- B.1. Units -- B.2. Input Data -- Appendix C: Input Data for WWFE Problems -- Problem 1: -- Problem 2 -- Problem 3 -- Problem 4 -- Problem 5 -- Problem 6 -- Problem 7: -- Problem 8: -- Problem 9: -- Problem 10: -- Problem 11: -- Problem 12: -- Problem 13: -- Problem 14: -- References -- MICROMECHANICAL ANALYSIS FOR LAMINATEDCOMPOSITE MATERIALS -- Abstract -- 1. Introduction -- 2. Analysis of Laminated Composite Materials -- 3. Micromechanical Analysis -- 3.1. Overview.

3.2.Ensemble-Volume Averaged Micromechanical Equation -- 3.2.1.Eshelby's Inclusion Problem -- 3.2.2.Micromechanical Equation in an Elastic Medium -- 3.3. A Constitutive Model For Unidirectional Fibrous Composites -- 3.4. Validation and Verification of the Constitutive Model -- 3.5. Numerical Simulations -- 4. Summary -- References -- SMART STRUCTURES FOR WIRELESS COMMUNICATIONS -- Abstract -- 1. Introduction -- 2. Smart-Skin Antenna Structure -- 2.1. Basics -- 2.1.1. Configuration -- 2.1.2. Mechanical and Electrical Contributions -- 2.2. Design Procedure, Manufacturing, and Test -- 2.2.1. Design Procedure -- 2.2.2. Manufacturing and Test -- 2.3. Multilayer Effect -- 2.3.1. Superstrate-Substrate Geometry -- 2.3.2. Gain and Bandwidth -- 3. Structural and Antenna Performance -- 3.1. Buckling Test -- 3.1.1. Preparation of Specimen -- 3.1.2. Structural Performance -- 3.1.3. Antenna Performances -- 3.2. Fatigue Test -- 3.2.1. Preparation of Specimen -- 3.2.2. Antenna Performance -- 3.2.3. Structural Performance -- 3.3. Impact Test -- 3.3.1. Preparation of Specimen -- 3.3.2. Structural Performance -- 3.3.3. Antenna Performance -- 4. Smart-Skin Phased-Array System -- 4.1. Design and Fabrication -- 4.2. Beam Scanning Test -- 5. Conclusion -- References -- COMPARISON BETWEEN LOW VELOCITY IMPACTAND QUASI-STATIC INDENTATION TESTS ON CFRPCOMPOSITE LAMINATES -- Abstract -- 1. Introduction -- 2. Experimental Procedure -- 2.1. Low Velocity Impact Tests -- 2.2. Quasi-static Indentation Tests -- 2.3. Specimen Inspection -- 3. Numerical Modelling -- 4. Results of the Experimental Tests -- 5. Results of the Numerical Analysis -- 5.1. Quasi-static Indentation -- 5.2. Low Velocity Impact -- 6. Comparison between Impact and Indentation -- 7. Conclusion -- Acknowledgements -- References -- MICRO-NANO ENGINEERED COMPOSITES - NEWDIRECTIONS IN BIOSENSING TECHNOLOGIES.

Introduction -- Biosensor Designs -- Engineered Composites - Form and Function -- Inorganic Materials -- Organic Systems -- Carbon Nanotubes -- Hybrid Systems -- Conclusion -- Abbreviations -- References -- REVIEW ON METHODOLOGIES OF PROGRESSIVEFAILURE ANALYSIS OF COMPOSITE LAMINATES -- Abstract -- 1. Introduction -- 2. Failure Criteria of Composite Laminates -- 3. Continuum Damage Mechanics Theory -- 4. Finite Element Implementation of Progressive Failure Analysis -- 1. Dynamic Algorithm -- 2. Nonlinear Stabilization Algorithm -- 3. Arc-Length Algorithm -- 5. Progressive Failure Analysis of Carbon Fiber/Epoxy CompositeCylindrical Laminates -- 6. Conclusion -- Acknowledgements -- References -- OPTIC FIBRE SYSTEM FOR DAMAGE MONITORINGIN COMPOSITE MATERIALS -- Abstract -- 1. Introduction -- 2. Damage in Cross-Ply Composite Laminates -- 3. Acoustic Emission -- 4. Optic Fibre Fabry-Pérot Interferometer -- 5. Interrogation Process -- 6. Material Fabrication and Sensor Embedding -- 7. Generation of the Two Quadrature-Shifted Signals Using FibreBragg Gratings -- 7.1. Fibre Bragg Grating -- 7.2. Extrinsic Fabry-Pérot Interferometer Stabilization Procedure -- 8. Experimental Results -- 8.1. Detection of Simulated Periodic Ultrasonic Waves -- 8.2. Detection of Simulated Acoustic Emission Waves -- 9. Discussion -- References -- FORMULATION OF A MACRO-ELEMENT TO ANALYZETHE MECHANICAL BEHAVIOR OF GENERALCOMPOSITE LAMINATED PLATES -- Abstract -- 1. Introduction -- 2. Formulation -- 2.1. Problem Definition -- 2.2. Energy Functional Components -- 2.3. Mapping Technique and Energy Functional -- 2.4. Boundary Conditions and Approximating Functions -- 3. Application of the Ritz Method -- 4. Verification of the Formulation and Its Numerical Applications -- 4.1. General Description -- 4.2. Validation and Convergence Studies -- 4.3. Numerical Results for Selected Cases.

5. Conclusion -- Appendix A -- Appendix B -- References -- DELAMINATION OF COMPOSITE STRUCTUREUNDER VARIOUS TYPES OF LOADING BY HYBRIDMONGREL ELEMENTS -- Abstract -- Nomenclature -- Greek Symbols -- 1. Introduction -- 2. Determination of Stress Singularity Order -- 3. Formulae for Metis Displacement Finite Element -- A. In Regular Elements -- B. In Singular Elements -- C. In all Elements of the Structure -- 4. Numerical Results -- 4.1. Stress Singularity Order -- 4.2. Delamination in Composite Laminates -- 1). Delamination under Uniform Axial Extension -- 2). Delamination of Composite Laminates under Bending -- 3). Delamination of Composite Laminates under Twisting -- 5. Conclusions -- References -- THE SURFACE INTEGRITY OF COMPOSITELAMINATES SUBJECTED TO DRILLING -- Abstract -- Introduction -- Delamination -- Surface Finish -- Dimensional and Geometric Deviations -- Conclusion -- Acknowledgements -- References -- FAILURE PROCESS OF CARBON FIBER COMPOSITES -- Abstract -- 1. Introduction -- 2. Analysis -- 3. Failure Process -- 4. Numerical and Experimental Verification -- 5. Application -- Conclusion -- Acknowledgements -- References -- TOWARDS DIFFUSE INTERFACE MODELS WITH A NONLINEAR POLYCRYSTALLINE ELASTIC ENERGY -- Abstract -- 1.Introduction -- 2.A Polycrystalline Lamination Theory -- 2.1.The Elastic Energy in Single Crystalline Composites -- 2.2.A Polycrystalline Lamination Theory -- 3.The AC-CH Model and Extensions -- 3.1.Existence and Uniqueness Results of the AC-CH Model with Linear Elasticity -- 3.2.Existence and Uniqueness of the AC-CH model with Geometrically Linear Elasticity -- 3.3.The Extension of the AC-CH Model to Polycrystalline Elastic Materials -- 4.Conclusion -- References -- INDEX.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: