Cover image for Engineering Risk Assessment with Subset Simulation.
Engineering Risk Assessment with Subset Simulation.
Title:
Engineering Risk Assessment with Subset Simulation.
Author:
Au, Siu-Kui.
ISBN:
9781118398067
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (337 pages)
Contents:
ENGINEERING RISK ASSESSMENT WITH SUBSET SIMULATION -- Contents -- About the Authors -- Preface -- Acknowledgements -- Nomenclature -- 1 Introduction -- 1.1 Formulation -- 1.2 Context -- 1.3 Extreme Value Theory -- 1.4 Exclusion -- 1.5 Organization of this Book -- 1.6 Remarks on the Use of Risk Analysis -- 1.7 Conventions -- References -- 2 A Line of Thought -- 2.1 Numerical Integration -- 2.2 Perturbation -- 2.3 Gaussian Approximation -- 2.3.1 Single Design Point -- 2.3.2 Multiple Design Points -- 2.4 First/Second-Order Reliability Method -- 2.4.1 Context -- 2.4.2 Design Point -- 2.4.3 FORM -- 2.4.4 SORM -- 2.4.5 Connection with Gaussian Approximation -- 2.5 Direct Monte Carlo -- 2.5.1 Unbiasedness -- 2.5.2 Mean-Square Convergence -- 2.5.3 Asymptotic Distribution (Central Limit Theorem) -- 2.5.4 Almost Sure Convergence (Strong Law of Large Numbers) -- 2.5.5 Failure Probability Estimation -- 2.5.6 CCDF Perspective -- 2.5.7 Rare Event Problems -- 2.5.8 Variance Reduction by Conditioning -- 2.6 Importance Sampling -- 2.6.1 Optimal Sampling Density -- 2.6.2 Failure Probability Estimation -- 2.6.3 Shifting Distribution -- 2.6.4 Benefits and Side-Effects -- 2.6.5 Bias -- 2.6.6 Curse of Dimension -- 2.6.7 CCDF Perspective -- 2.7 Subset Simulation -- 2.8 Remarks on Reliability Methods -- 2A.1 Appendix: Laplace Type Integrals -- References -- 3 Simulation of Standard Random Variable and Process -- 3.1 Pseudo-Random Number -- 3.2 Inversion Principle -- 3.2.1 Continuous Random Variable -- 3.2.2 Discrete Random Variables -- 3.3 Mixing Principle -- 3.4 Rejection Principle -- 3.4.1 Acceptance Probability -- 3.5 Samples of Standard Distribution -- 3.6 Dependent Gaussian Variables -- 3.6.1 Cholesky Factorization -- 3.6.2 Eigenvector Factorization -- 3.7 Dependent Non-Gaussian Variables -- 3.7.1 Nataf Transformation -- 3.7.2 Copula.

3.8 Correlation through Constraint -- 3.8.1 Uniform in Sphere -- 3.8.2 Gaussian on Hyper-plane -- 3.9 Stationary Gaussian Process -- 3.9.1 Autocorrelation Function and Power Spectral Density -- 3.9.2 Discrete-Time Process -- 3.9.3 Sample Autocorrelation Function and Periodogram -- 3.9.4 Time Domain Representation -- 3.9.5 The ARMA Process -- 3.9.6 Frequency Domain Representation -- 3.9.7 Remarks -- 3A.1 Appendix: Variance of Linear System Driven by White Noise -- 3A.2 Appendix: Verification of Spectral Formula -- References -- 4 Markov Chain Monte Carlo -- 4.1 Problem Context -- 4.2 Metropolis Algorithm -- 4.2.1 Proposal PDF -- 4.2.2 Statistical Properties -- 4.2.3 Detailed Balance -- 4.2.4 Biased Rejection -- 4.2.5 Reversible Chain -- 4.3 Metropolis-Hastings Algorithm -- 4.3.1 Detailed Balance -- 4.3.2 Independent Proposal and Importance Sampling -- 4.4 Statistical Estimation -- 4.4.1 Properties of Estimator -- 4.4.2 Chain Correlation -- 4.4.3 Ergodicity -- 4.5 Generation of Conditional Samples -- 4.5.1 Curse of Dimension -- 4.5.2 Independent Component MCMC -- References -- 5 Subset Simulation -- 5.1 Standard Algorithm -- 5.1.1 Simulation Level 0 (Direct Monte Carlo) -- 5.1.2 Simulation Level (MCMC) -- 5.2 Understanding the Algorithm -- 5.2.1 Direct Monte Carlo Indispensible -- 5.2.2 Rare Regime Explored by MCMC -- 5.2.3 Stationary Markov Chain from the Start -- 5.2.4 Multiple Chains -- 5.2.5 Seeds Discarded -- 5.2.6 CCDF Perspective -- 5.2.7 Repeated Samples -- 5.2.8 Uniform Conditional Probabilities -- 5.3 Error Assessment in a Single Run -- 5.3.1 Heuristic Argument -- 5.3.2 Efficiency Over Direct Monte Carlo -- 5.4 Implementation Issues -- 5.4.1 Proposal Distribution -- 5.4.2 Ergodicity -- 5.4.3 Generalizations -- 5.4.4 Level Probability -- 5.5 Analysis of Statistical Properties -- 5.5.1 Random Intervals -- 5.5.2 Random CCDF Values.

5.5.3 Summary of Results -- 5.5.4 Expectation -- 5.5.5 Variance -- 5.6 Auxiliary Response -- 5.6.1 Statistical Properties -- 5.6.2 Design of Driving Response -- 5.7 Black Swan Events -- 5.7.1 Diagnosis -- 5.8 Applications -- 5.9 Variants -- References -- 6 Analysis Using Conditional Failure Samples -- 6.1 Probabilistic Failure Analysis -- 6.2 Uncertain Parameter Sensitivity -- 6.3 Conditional Samples from Direct Monte Carlo -- 6.3.1 Conditional Expectation -- 6.3.2 Parameter Sensitivity -- 6.4 Conditional Samples from Subset Simulation -- 6.4.1 Sample Partitioning -- 6.4.2 Conditioning Structure -- 6.4.3 Conditional Expectation -- 6.4.4 Parameter Sensitivity -- References -- 7 Spreadsheet Implementation -- 7.1 Microsoft Excel and VBA -- 7.1.1 Excel Spreadsheet -- 7.1.2 Illustrative Example - Polynomial Function -- 7.1.3 Visual Basic for Applications (VBA) -- 7.1.4 VBA User-Defined Functions -- 7.1.5 VBA Subroutines -- 7.1.6 Macro Recorder -- 7.2 Software Package UPSS -- 7.2.1 Installation in Excel 2003 -- 7.2.2 Installation in Excel 2010 -- 7.2.3 Software Context -- 7.2.4 Deterministic System Modeling -- 7.2.5 Uncertainty Modeling -- 7.2.6 Uncertainty Propagation -- 7.2.7 Pre-Processing Tools -- 7.2.8 Post-Processing Tools -- 7.3 Tutorial Example - Polynomial Function -- 7.3.1 Deterministic System Modeling -- 7.3.2 Uncertainty Modeling -- 7.3.3 Uncertainty Propagation -- 7.3.4 Direct Monte Carlo -- 7.3.5 Subset Simulation -- 7.4 Tutorial Example - Slope Stability -- 7.4.1 Problem Context -- 7.4.2 Deterministic System Modeling -- 7.4.3 Uncertainty Modeling -- 7.4.4 Histogram Tool -- 7.4.5 Uncertainty Propagation -- 7.4.6 CCDF of Driving Variable -- 7.4.7 Auxiliary Variable -- 7.5 Tutorial Example - Portal Frame -- 7.5.1 Problem Context -- 7.5.2 Deterministic System Modeling -- 7.5.3 Uncertainty Modeling -- 7.5.4 Uncertainty Propagation.

7.5.5 Transforming Standard Normal Random Variables -- 7.5.6 Introducing Correlation -- References -- Appendix A: Mathematical Tools -- A.1 Calculus -- A.1.1 Lagrange Multiplier Method -- A.1.2 Asymptotics -- A.2 Linear Algebra -- A.2.1 Linear Independence, Span, Basis -- A.2.2 Orthogonality and Norm -- A.2.3 Gram-Schmidt Procedure -- A.2.4 Eigenvalue Problem -- A.2.5 Real Symmetric Matrices -- A.2.6 Function of Real Symmetric Matrices -- A.3 Probability Theory -- A.3.1 Conditional Expectation -- A.3.2 Conditional Variance Formula -- A.3.3 Chebyshevs Inequality -- A.3.4 Jensens Inequality -- A.3.5 Modes of Stochastic Convergence -- Index.
Abstract:
This book starts with the basic ideas in uncertainty propagation using Monte Carlo methods and the generation of random variables and stochastic processes for some common distributions encountered in engineering applications. It then introduces a class of powerful simulation techniques called Markov Chain Monte Carlo method (MCMC), an important machinery behind Subset Simulation that allows one to generate samples for investigating rare scenarios in a probabilistically consistent manner. The theory of Subset Simulation is then presented, addressing related practical issues encountered in the actual implementation. The book also introduces the reader to probabilistic failure analysis and reliability-based sensitivity analysis, which are laid out in a context that can be efficiently tackled with Subset Simulation or Monte Carlo simulation in general. The book is supplemented with an Excel VBA code that provides a user-friendly tool for the reader to gain hands-on experience with Monte Carlo simulation. Presents a powerful simulation method called Subset Simulation for efficient engineering risk assessment and failure and sensitivity analysis Illustrates examples with MS Excel spreadsheets, allowing readers to gain hands-on experience with Monte Carlo simulation Covers theoretical fundamentals as well as advanced implementation issues A companion website is available to include the developments of the software ideas This book is essential reading for graduate students, researchers and engineers interested in applying Monte Carlo methods for risk assessment and reliability based design in various fields such as civil engineering, mechanical engineering, aerospace engineering, electrical engineering and nuclear engineering. Project managers, risk managers and financial engineers dealing with uncertainty effects may also find it useful.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: