Cover image for Fluid Mechanics.
Fluid Mechanics.
Title:
Fluid Mechanics.
Author:
Cohen, Ira M.
ISBN:
9780080555836
Personal Author:
Edition:
4th ed.
Physical Description:
1 online resource (901 pages)
Contents:
Front Cover -- Fluid Mechanics -- Copyright Page -- Dedication -- About the Author -- Table of Contents -- Preface -- Preface to Third Edition -- Preface to Second Edition -- Preface to First Edition -- Author's Notes -- Chapter 1. Introduction -- 1. Fluid Mechanics -- 2. Units of Measurement -- 3. Solids, Liquids, and Gases -- 4. Continuum Hypothesis -- 5. Transport Phenomena -- 6. Surface Tension -- 7. Fluid Statics -- 8. Classical Thermodynamics -- 9. Perfect Gas -- 10. Static Equilibrium of a Compressible Medium -- Exercises -- Literature Cited -- Supplemental Reading -- Chapter 2. Cartesian Tensors -- 1. Scalars and Vectors -- 2. Rotation of Axes: Formal Definition of a Vector -- 3. Multiplication of Matrices -- 4. Second-Order Tensor -- 5. Contraction and Multiplication -- 6. Force on a Surface -- 7. Kronecker Delta and Alternating Tensor -- 8. Dot Product -- 9. Cross Product -- 10. Operator ∇: Gradient, Divergence, and Curl -- 11. Symmetric and Antisymmetric Tensors -- 12. Eigenvalues and Eigenvectors of a Symmetric Tensor -- 13. Gauss' Theorem -- 14. Stokes' Theorem -- 15. Comma Notation -- 16. Boldface vs Indicial Notation -- Exercises -- Literature Cited -- Supplemental Reading -- Chapter 3. Kinematics -- 1. Introduction -- 2. Lagrangian and Eulerian Specifications -- 3. Eulerian and Lagrangian Descriptions: The Particle Derivative -- 4. Streamline, Path Line, and Streak Line -- 5. Reference Frame and Streamline Pattern -- 6. Linear Strain Rate -- 7. Shear Strain Rate -- 8. Vorticity and Circulation -- 9. Relative Motion near a Point: Principal Axes -- 10. Kinematic Considerations of Parallel Shear Flows -- 11. Kinematic Considerations of Vortex Flows -- 12. One-, Two-, and Three-Dimensional Flows -- 13. The Streamfunction -- 14. Polar Coordinates -- Exercises -- Supplemental Reading -- Chapter 4. Conservation Laws -- 1. Introduction.

2. Time Derivatives of Volume Integrals -- 3. Conservation of Mass -- 4. Streamfunctions: Revisited and Generalized -- 5. Origin of Forces in Fluid -- 6. Stress at a Point -- 7. Conservation of Momentum -- 8. Momentum Principle for a Fixed Volume -- 9. Angular Momentum Principle for a Fixed Volume -- 10. Constitutive Equation for Newtonian Fluid -- 11. Navier-Stokes Equation -- 12. Rotating Frame -- 13. Mechanical Energy Equation -- 14. First Law of Thermodynamics: Thermal Energy Equation -- 15. Second Law of Thermodynamics: Entropy Production -- 16. Bernoulli Equation -- 17. Applications of Bernoulli's Equation -- 18. Boussinesq Approximation -- 19. Boundary Conditions -- Exercises -- Literature Cited -- Supplemental Reading -- Chapter 5. Vorticity Dynamics -- 1. Introduction -- 2. Vortex Lines and Vortex Tubes -- 3. Role of Viscosity in Rotational and Irrotational Vortices -- 4. Kelvin's Circulation Theorem -- 5. Vorticity Equation in a Nonrotating Frame -- 6. Velocity Induced by a Vortex Filament: Law of Biot and Savart -- 7. Vorticity Equation in a Rotating Frame -- 8. Interaction of Vortices -- 9. Vortex Sheet -- Exercises -- Literature Cited -- Supplemental Reading -- Chapter 6. Irrotational Flow -- 1. Relevance of Irrotational Flow Theory -- 2. Velocity Potential: Laplace Equation -- 3. Application of Complex Variables -- 4. Flow at a Wall Angle -- 5. Sources and Sinks -- 6. Irrotational Vortex -- 7. Doublet -- 8. Flow past a Half-Body -- 9. Flow past a Circular Cylinder without Circulation -- 10. Flow past a Circular Cylinder with Circulation -- 11. Forces on a Two-Dimensional Body -- 12. Source near a Wall: Method of Images -- 13. Conformal Mapping -- 14. Flow around an Elliptic Cylinder with Circulation -- 15. Uniqueness of Irrotational Flows -- 16. Numerical Solution of Plane Irrotational Flow -- 17. Axisymmetric Irrotational Flow.

18. Streamfunction and Velocity Potential for Axisymmetric Flow -- 19. Simple Examples of Axisymmetric Flows -- 20. Flow around a Streamlined Body of Revolution -- 21. Flow around an Arbitrary Body of Revolution -- 22. Concluding Remarks -- Exercises -- Literature Cited -- Supplemental Reading -- Chapter 7. Gravity Waves -- 1. Introduction -- 2. The Wave Equation -- 3. Wave Parameters -- 4. Surface Gravity Waves -- 5. Some Features of Surface Gravity Waves -- 6. Approximations for Deep and Shallow Water -- 7. Influence of Surface Tension -- 8. Standing Waves -- 9. Group Velocity and Energy Flux -- 10. Group Velocity and Wave Dispersion -- 11. Nonlinear Steepening in a Nondispersive Medium -- 12. Hydraulic Jump -- 13. Finite Amplitude Waves of Unchanging Form in a Dispersive Medium -- 14. Stokes' Drift -- 15. Waves at a Density Interface between Infinitely Deep Fluids -- 16. Waves in a Finite Layer Overlying an Infinitely Deep Fluid -- 17. Shallow Layer Overlying an Infinitely Deep Fluid -- 18. Equations of Motion for a Continuously Stratified Fluid -- 19. Internal Waves in a Continuously Stratified Fluid -- 20. Dispersion of Internal Waves in a Stratified Fluid -- 21. Energy Considerations of Internal Waves in a Stratified Fluid -- Exercises -- Literature Cited -- Chapter 8. Dynamic Similarity -- 1. Introduction -- 2. Nondimensional Parameters Determined from Differential Equations -- 3. Dimensional Matrix -- 4. Buckingham's Pi Theorem -- 5. Nondimensional Parameters and Dynamic Similarity -- 6. Comments on Model Testing -- 7. Significance of Common Nondimensional Parameters -- Exercises -- Literature Cited -- Supplemental Reading -- Chapter 9. Laminar Flow -- 1. Introduction -- 2. Analogy between Heat and Vorticity Diffusion -- 3. Pressure Change Due to Dynamic Effects -- 4. Steady Flow between Parallel Plates -- 5. Steady Flow in a Pipe.

6. Steady Flow between Concentric Cylinders -- 7. Impulsively Started Plate: Similarity Solutions -- 8. Diffusion of a Vortex Sheet -- 9. Decay of a Line Vortex -- 10. Flow Due to an Oscillating Plate -- 11. High and Low Reynolds Number Flows -- 12. Creeping Flow around a Sphere -- 13. Nonuniformity of Stokes' Solution and Oseen's Improvement -- 14. Hele-Shaw Flow -- 15. Final Remarks -- Exercises -- Literature Cited -- Supplemental Reading -- Chapter 10. Boundary Layers and Related Topics -- 1. Introduction -- 2. Boundary Layer Approximation -- 3. Different Measures of Boundary Layer Thickness -- 4. Boundary Layer on a Flat Plate with a Sink at the Leading Edge: Closed Form Solution -- 5. Boundary Layer on a Flat Plate: Blasius Solution -- 6. von Karman Momentum Integral -- 7. Effect of Pressure Gradient -- 8. Separation -- 9. Description of Flow past a Circular Cylinder -- 10. Description of Flow past a Sphere -- 11. Dynamics of Sports Balls -- 12. Two-Dimensional Jets -- 13. Secondary Flows -- 14. Perturbation Techniques -- 15. An Example of a Regular Perturbation Problem -- 16. An Example of a Singular Perturbation Problem -- 17. Decay of a Laminar Shear Layer -- Exercises -- Literature Cited -- Supplemental Reading -- Chapter 11. Computational Fluid Dynamics -- 1. Introduction -- 2. Finite Difference Method -- 3. Finite Element Method -- 4. Incompressible Viscous Fluid Flow -- 5. Three Examples -- 6. Concluding Remarks -- Exercises -- Literature Cited -- Chapter 12. Instability -- 1. Introduction -- 2. Method of Normal Modes -- 3. Thermal Instability: The Bénard Problem -- 4. Double-Diffusive Instability -- 5. Centrifugal Instability: Taylor Problem -- 6. Kelvin-Helmholtz Instability -- 7. Instability of Continuously Stratified Parallel Flows -- 8. Squire's Theorem and Orr-Sommerfeld Equation -- 9. Inviscid Stability of Parallel Flows.

10. Some Results of Parallel Viscous Flows -- 11. Experimental Verification of Boundary Layer Instability -- 12. Comments on Nonlinear Effects -- 13. Transition -- 14. Deterministic Chaos -- Exercises -- Literature Cited -- Chapter 13. Turbulence -- 1. Introduction -- 2. Historical Notes -- 3. Averages -- 4. Correlations and Spectra -- 5. Averaged Equations of Motion -- 6. Kinetic Energy Budget of Mean Flow -- 7. Kinetic Energy Budget of Turbulent Flow -- 8. Turbulence Production and Cascade -- 9. Spectrum of Turbulence in Inertial Subrange -- 10. Wall-Free Shear Flow -- 11. Wall-Bounded Shear Flow -- 12. Eddy Viscosity and Mixing Length -- 13. Coherent Structures in a Wall Layer -- 14. Turbulence in a Stratified Medium -- 15. Taylor's Theory of Turbulent Dispersion -- 16. Concluding Remarks -- Exercises -- Literature Cited -- Supplemental Reading -- Chapter 14. Geophysical Fluid Dynamics -- 1. Introduction -- 2. Vertical Variation of Density in Atmosphere and Ocean -- 3. Equations of Motion -- 4. Approximate Equations for a Thin Layer on a Rotating Sphere -- 5. Geostrophic Flow -- 6. Ekman Layer at a Free Surface -- 7. Ekman Layer on a Rigid Surface -- 8. Shallow-Water Equations -- 9. Normal Modes in a Continuously Stratified Layer -- 10. High- and Low-Frequency Regimes in Shallow-Water Equations -- 11. Gravity Waves with Rotation -- 12. Kelvin Wave -- 13. Potential Vorticity Conservation in Shallow-Water Theory -- 14. Internal Waves -- 15. Rossby Wave -- 16. Barotropic Instability -- 17. Baroclinic Instability -- 18. Geostrophic Turbulence -- Exercises -- Literature Cited -- Chapter 15. Aerodynamics -- 1. Introduction -- 2. The Aircraft and Its Controls -- 3. Airfoil Geometry -- 4. Forces on an Airfoil -- 5. Kutta Condition -- 6. Generation of Circulation -- 7. Conformal Transformation for Generating Airfoil Shape -- 8. Lift of Zhukhovsky Airfoil.

9. Wing of Finite Span.
Abstract:
Fluid mechanics, the study of how fluids behave and interact under various forces and in various applied situations-whether in the liquid or gaseous state or both-is introduced and comprehensively covered in this widely adopted text. Fully revised and updated with the addition of a new chapter on biofluid mechanics, Fluid Mechanics, Fourth Edition is suitable for both a first or second course in fluid mechanics at the graduate or advanced undergraduate level. The leading advanced general text on fluid mechanics, Fluid Mechanics, 4e guides students from the fundamentals to the analysis and application of fluid mechanics, including compressible flow and such diverse applications as hydraulics and aerodynamics.Updates to several chapters and sections, including Boundary Layers, Turbulence, Geophysical Fluid Dynamics, Thermodynamics and Compressibility. Fully revised and updated chapter on Computational Fluid Dynamics. New chapter on Biofluid Mechanics by Professor Portonovo Ayyaswamy, the Asa Whitney Professor of Dynamical Engineering at the University of Pennsylvania.New Visual Resources appendix provides a list of fluid mechanics films available for viewing online.Additional worked-out examples and end-of-chapter problems.Updated online Solutions Manual for adopting instructors.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Subject Term:
Electronic Access:
Click to View
Holds: Copies: