Cover image for Translational Multimodality Optical Imaging.
Translational Multimodality Optical Imaging.
Title:
Translational Multimodality Optical Imaging.
Author:
Azar, Fred S.
ISBN:
9781596933088
Personal Author:
Physical Description:
1 online resource (430 pages)
Contents:
Translational Multimodality Optical Imaging -- Contents -- Foreword -- Preface -- Translational Research -- Optical Imaging -- A Case Example of Translational Optical Imaging: The Network forTranslational Research in Optical Imaging -- Aim and Scope of This Book -- Acknowledgments -- Ref erences -- Chapter 1: Introduction to Clinical Optical Imaging -- 1.1 Introduction -- 1.2 Tissue Optics -- 1.2.1 Scattering -- 1.2.2 Raman Scattering -- 1.2.3 Absorption -- 1.2.4 Fluorescence -- 1.3 Light Propagation -- 1.3.1 Fundamentals -- 1.3.2 Forward Model -- 1.4 Multimodality Imaging -- 1.4.1 A Brief History of Clinical Multimodality Imaging -- 1.4.2 Multimodality Optical Imaging -- 1.5 Conclusions -- References -- Chapter 2: In Vivo Microscopy -- 2.1 Introduction -- 2.2 Confocal Microscopy -- 2.3 Endoscope-Compatible Systems -- 2.4 MKT Cellvizio-GI -- 2.5 Dual-Axes Confocal Microscope -- 2.6 Molecular Imaging -- References -- Chapter 3: Endoscopy -- 3.1 Introduction -- 3.2 Point-Probe Spectroscopy Techniques -- 3.2.1 Scattering Spectroscopy -- 3.2.2 Fluorescence Spectroscopy -- 3.2.3 Raman Spectroscopy -- 3.2.4 Multimodality Spectroscopy -- 3.3 Wide-Field Imaging -- 3.3.1 Fluorescence Imaging -- 3.3.2 Molecular Imaging -- 3.3.3 Chromoendoscopy -- 3.3.4 Narrowband Imaging -- 3.3.5 Multimodality Wide-Field Imaging -- 3.4 Cross-Sectional Imaging -- 3.4.1 Endoscopic Optical Coherence Tomography -- 3.4.2 Ultrahigh-Resolution OCT (UHROCT) -- 3.4.3 Three-Dimensional OCT -- 3.4.4 Multimodality Imaging with OCT -- 3.5 Summary -- Acknowledgments -- References -- Chapter 4: Diffuse Optical Techniques: Instrumentation -- 4.1 Introduction: Deterministic "Diffuse" Detection of Probabilistic Photon Propagation -- 4.2 Methods of Differentiating the Origin of Diffuse Photons -- 4.2.1 The Source-Encoding Requirement in DOT.

4.2.2 Methods of Source Encoding and Detector Decoding for Diffuse Optical Tomography -- 4.3 Techniques of Decoupling the Absorption and Scattering Contributions to the Photon Remission -- 4.3.1 Time-Domain Detection -- 4.3.2 Frequency-Domain Detection -- 4.3.3 Continuous-Wave Detection -- 4.4 Principles of Determining the Heterogeneity of Optical Properties -- 4.4.1 Tomographic Image Reconstruction and Prior Utilization -- 4.4.2 Diffuse Optical Tomography Imaging in the Context of MultimodalityImaging -- 4.5 Novel Approaches in Instrumentation of Diffuse Optical Tomography: Source Spectral Encoding -- 4.5.1 Discrete Spectral Encoding by Use of Multiple Laser Diodes -- 4.5.2 Imaging Examples of Spectral-Encoding Rapid NIR Tomography -- 4.5.3 Spread Spectral Encoding by Use of Single Wideband Light Source -- 4.5.4 Light Sources for Spread Spectral Encoding -- 4.5.5 Characteristics of Spread Spectral Encoding -- 4.5.6 Hemodynamic Imaging by Spread-Spectral-Encoding NIR Tomography -- 4.6 Novel Approaches in Instrumentation of Diffuse Optical Tomography: Transrectal Applicator -- 4.6.1 Transrectal Applicator for Transverse DOT Imaging -- 4.6.2 Transrectal Applicator for Sagittal DOT Imaging -- 4.7 Potential Directions of Instrumentation for Diffuse Optical Measurements -- 4.8 Conclusions -- Acknowledgments -- References -- Chapter 5: Multimodal Diffuse Optical Tomography:Theory -- 5.1 Introduction -- 5.2 Diffuse Optical Tomography -- 5.2.1 The Forward Problem and Linearization -- 5.2.2 Inverse Problem -- 5.3 Multimodality Reconstruction: Review of Previous Work -- 5.4 Multimodality Priors and Regularization -- 5.4.1 Structural Priors -- 5.4.2 Regularization Using Mutual Information -- 5.5 Conclusions -- Acknowledgments -- References -- Chapter 6: Diffuse Optical Spectroscopy with Magnetic Resonance Imaging -- 6.1 Introduction -- 6.2 Anatomical Imaging.

6.3 Combining Hemodynamic Measures of MRI and Optical Imaging -- 6.4 MRI-Guided Optical Imaging Reconstruction Techniques -- 6.5 Other MR-Derived Contrast and Optical Imaging -- 6.6 Hardware Challenges to Merging Optical and MRI -- 6.7 Optical/MR Contrast Agents -- 6.8 Outlook for MR-Optical Imaging -- References -- Chapter 7: Software Platforms for Integration of Diffuse Optical Imaging and OtherModalities -- 7.1 Introduction -- 7.1.1 A Platform for Diffuse Optical Tomography -- 7.1.2 A Platform for Diffuse Optical Spectroscopy -- 7.2 Imaging Platform Technologies -- 7.2.1 Multimodal Imaging Workflow for DOT Applications -- 7.2.2 3D-DOT/3D-MRI Image-Registration Algorithm -- 7.2.3 Breast MRI Image Segmentation -- 7.2.4 Image-Based Guidance Workflow and System for DOS Applications -- 7.3 Computing the Accuracy of a Guidance and Tracking System -- 7.3.1 Global Accuracy of the System -- 7.3.2 Motion Tracking -- 7.4 Application to Nonconcurrent MRI and DOT Data of Human Subjects -- 7.5 Conclusion -- Acknowledgments -- References -- Chapter 8: Diffuse Optical Spectroscopy in Breast Cancer: Coregistration with MRI and Predicting Response to Neoadjuvant Chemotherapy -- 8.1 Introduction -- 8.2 Coregistration with MRI -- 8.2.1 Materials and Methods -- 8.2.2 Results -- 8.2.3 Discussion -- 8.3 Monitoring and Predicting Response to Breast Cancer Neoadjuvant Chemotherapy -- 8.3.1 Materials and Methods -- 8.3.2 Results -- 8.3.3 Discussion -- 8.4 Summary and Conclusions -- Acknowledgments -- References -- Chapter 9: Optical Imaging and X-Ray Imaging -- 9.1 Introduction -- 9.1.1 Current Clinical Approach to Breast Cancer Screening and Diagnosis -- 9.1.2 The Importance of Fusing Function and Structural Information -- 9.1.3 Recent Advances in DOT for Imaging Breast Cancer -- 9.2 Instrumentation and Methods.

9.2.1 Tomographic Optical Breast-Imaging System and Tomosynthesis -- 9.2.2 3D Forward Modeling and Nonlinear Image Reconstruction -- 9.2.3 Simultaneous Image Reconstruction with Calibration Coefficient Estimation -- 9.2.4 Utilizing Spectral Prior and Best Linear Unbiased Estimator -- 9.2.5 Utilizing Spatial Prior from Tomosynthesis Image -- 9.3 Clinical Trial of TOBI/DBT Imaging System -- 9.3.1 Image Reconstruction of Healthy Breasts -- 9.3.2 Imaging Breasts with Tumors or Benign Lesions -- 9.3.3 Region-of-Interest Analysis -- 9.4 Dynamic Imaging of Breast Under Mechanical Compression -- 9.4.1 Experiment Setup -- 9.4.2 Tissue Dynamic from Healthy Subjects -- 9.4.3 Contact Pressure Map Under Compression -- 9.5 Conclusions -- References -- Chapter 10: Diffuse Optical Imaging and PET Imaging -- 10.1 Introduction -- 10.2 Positron Emission Tomography (PET) -- 10.2.1 PET Fundamentals -- 10.2.2 PET Image Reconstruction -- 10.2.3 PET Instrumentation -- 10.3 Diffuse Optical Imaging (DOI) -- 10.3.1 DOI Instrumentation -- 10.3.2 DOI Image Reconstruction -- 10.4 Fluorescence Diffuse Optical Imaging (FDOI) -- 10.5 Clinical Observations -- 10.5.1 Whole-Body PET and DOI -- 10.5.2 Breast-Only PET and DOI -- 10.5.3 ICG Fluorescence -- 10.6 Summary -- References -- Chapter 11: Photodynamic Therapy -- 11.1 Introduction -- 11.2 Basics of PDT -- 11.3 Superficial Applications -- 11.4 PDT in Body Cavities -- 11.5 PDT for Solid Tumors -- 11.6 Delivery and Monitoring of PDT -- 11.7 The Future of PDT and Imaging -- Acknowledgments -- References -- Chapter 12: Optical Phantoms for Multimodality Imaging -- 12.1 Introduction -- 12.2 Absorption and Scatter Phantom Composition -- 12.3 Typical Tissue Phantoms for Multimodal and Optical Imaging -- 12.3.1 Hydrogel-Based Phantoms -- 12.3.2 Polyester Resin and RTV Silicone Phantoms -- 12.3.3 Aqueous Suspension Phantoms.

12.4 Conclusions -- Acknowledgments -- References -- Chapter 13: Intraoperative Near-Infrared Fluorescent Imaging Exogenous Fluorescence Contrast Agents -- 13.1 Introduction -- 13.2 Unmet Medical Needs Addressed by Intraoperative NIR Fluorescence Imaging -- 13.2.1 Improving Long-Term Efficacy of Primary Treatment -- 13.2.2 Reducing the Rate of Complications -- 13.3 Imaging Considerations -- 13.3.1 Contrast Media -- 13.3.2 Tissue Penetration Depth -- 13.3.3 Autofluorescence -- 13.3.4 Optical Design Considerations -- 13.3.5 Excitation -- 13.3.6 Collection Optics and Emission Filtering -- 13.3.7 Detectors -- 13.4 Future Outlook -- References -- Chapter 14: Clinical Studies in Optical Imaging: An Industry Perspective -- 14.1 Introduction -- 14.2 Breast Cancer -- 14.3 Optical Breast-Imaging Technology -- 14.4 Development Process -- 14.4.1 Product Definition -- 14.4.2 Clinical Indication -- 14.4.3 Target Markets -- 14.4.4 Regulatory Risk Classification -- 14.4.5 General Device Description -- 14.4.6 Design Control -- 14.5 Clinical Trials and Results -- 14.5.1 Clinical Plan -- 14.5.2 Pilot Studies -- 14.5.3 Tissue-Characterization Trials -- 14.6 Conclusions -- Acknowledgments -- References -- Chapter 15: Regulation and Regulatory Science for Optical Imaging -- 15.1 Introduction -- 15.2 Fundamental Concepts in Medical Device Regulation -- 15.2.1 Premarket and Postmarket -- 15.2.2 Safety -- 15.2.3 Effectiveness -- 15.2.4 Risk Evaluation -- 15.2.5 Labeling -- 15.2.6 Standards -- 15.3 Medical Device Regulation Throughout the World -- 15.3.1 International Harmonization of Medical Device Regulation -- 15.4 FDA Background -- 15.4.1 FDA Mission -- 15.4.2 FDA History and Authorizing Legislation -- 15.4.3 Organizational Structure of the FDA -- 15.5 Overview of FDA Regulations -- 15.5.1 Classification -- 15.5.2 Early Premarket Interactions.

15.5.3 Premarket Submissions.
Abstract:
Written by pioneers in the field, this first-of-its-kind resource on multimodal optical imaging provides you with a rigorous treatment of the various techniques together with the latest clinical advances in cancer detection and other important applications. You find full details on the principles, instrumentation, and methods of in vivo microscopy, optical coherence tomography, endoscopy, and diffuse optical techniques.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: