Cover image for Functional  Materials : For Energy, Sustainable Development and Biomedical Sciences.
Functional Materials : For Energy, Sustainable Development and Biomedical Sciences.
Title:
Functional Materials : For Energy, Sustainable Development and Biomedical Sciences.
Author:
Allard, Nicolas.
ISBN:
9783110307825
Personal Author:
Physical Description:
1 online resource (606 pages)
Series:
De Gruyter Textbook
Contents:
Also of Interest -- Title Page -- Copyright Page -- Foreword -- Preface -- Table of Contents -- Contributing authors -- About the editors -- 1 Introduction -- Part I: Functional materials: Synthesis and applications -- 2 A primer on polymer colloids: structure, synthesis and colloidal stability -- 2.1 Introduction -- 2.2 Polymer colloids inside out -- 2.2.1 How many polymer chains per particle? -- 2.2.2 How many particles? -- 2.2.3 Are the chains immobile within the nanoparticle? -- 2.2.4 Morphology of polymeric nanoparticles -- 2.3 Preparation of polymer nanoparticles -- 2.3.1 Emulsion polymerization -- 2.3.2 Miniemulsion polymerization -- 2.3.3 Microemulsion polymerization -- 2.3.4 Self-assembly in selective solvents -- 2.4 Colloidal stabilization -- 2.4.1 Electrostatic stabilization -- 2.4.2 Steric stabilization -- 2.4.3 Depletion stabilization -- 2.4.4 Future directions -- References -- 3 Synthesis, functionalization and properties of fullerenes and graphene materials -- 3.1 Introduction -- 3.2 Fullerenes -- 3.2.1 General considerations -- 3.2.2 Synthesis and purification of fullerenes -- 3.2.3 Chemical and physical properties of C60 -- 3.2.4 Chemical functionalization of C60 -- 3.2.5 Applications -- 3.3 Graphene -- 3.3.1 Production of graphene -- 3.3.2 Graphene in energy conversion devices -- Summary -- References -- 4 Ordered mesoporous silica: synthesis and applications -- 4.1 Introduction -- 4.2 Ordered mesoporous silica (OMS) -- 4.2.1 Principle of synthesis -- 4.2.2 Mesostructure diversity and tailoring -- 4.3 Functionalization of ordered mesoporous silica -- 4.4 Morphology control -- 4.5 Selected applications of functionalized ordered mesoporous silica -- 4.5.1 Functionalized MSNs as controlled drug delivery platforms -- 4.5.2 Functionalized mesoporous materials for extraction chromatography (EXC) applications.

4.5.3 Mesoporous organic-inorganic hybrid membranes for water desalination -- Acknowledgments -- References -- 5 Nanoparticles: Properties and applications -- 5.1 Introduction -- 5.2 Synthetic methods -- 5.2.1 Particle nucleation and growth -- 5.2.2 Synthesis in inverse micelles -- 5.3 Particle aggregation and stabilization of colloidal suspensions -- 5.4 Colloidal quantum dots -- 5.5 Metal nanoparticles -- 5.6 Metal oxide nanoparticles -- 5.6.1 Titanium dioxide -- 5.6.2 Iron oxide -- 5.6.3 Silica -- 5.7 Polymeric nanoparticles -- 5.8 Advanced architectures and hybrid systems -- References -- 6 Conjugated polymers for organic electronics -- 6.1 Introduction -- 6.2 Processable conjugated polymers -- 6.3 Applications in renewable energy -- 6.3.1 Organic solar cells -- 6.3.2 Conjugated polymers for organic solar cells -- 6.4 Applications in micro-electronics -- 6.4.1 Field-effect transistors -- 6.4.2 Conjugated polymers for field-effect transistors -- 6.5 Applications in lighting -- 6.5.1 Light-emitting diodes -- 6.5.2 Conjugated polymers for light-emitting diodes -- 6.6 Summary -- References -- 7 Theoretical tools for designing microscopic to macroscopic properties of functional materials -- 7.1 Methods -- 7.1.1 The link between microscopic and macroscopic scales -- 7.1.2 Ab initio methods -- 7.1.3 Bridging the gap between ab initio and atomistic levels -- 7.1.4 Atomistic simulation -- 7.1.5 Bridging the gap between atomistic and mesoscale levels -- 7.2 Examples -- 7.2.1 Quantum studies -- 7.2.2 Atomistic simulation -- 7.3 Summary -- References -- Part II: Development of new materials for energy applications -- 8 Electrochemical energy storage systems -- 8.1 Introduction -- 8.2 Metrics and performance evaluation -- 8.3 Models and theory of electrochemical charge storage -- 8.3.1 Battery operation - a Faradaic process.

8.3.2 Electrochemical capacitor operation - a non-Faradaic process -- 8.4 Electrolytes -- 8.5 Electrode materials -- 8.5.1 Electrochemical capacitors -- 8.5.2 Hybrid electrochemical capacitors -- 8.5.3 Lithium battery electrode materials -- 8.5.4 Negative (anode) electrode materials -- 8.5.5 The positive (cathode) electrode -- 8.5.6 Electrode production -- 8.6 Summary -- References -- 9 Functional ionic liquids electrolytes in lithium-ion batteries -- 9.1 Introduction -- 9.1.1 Historical overview -- 9.1.2 What are ionic liquids? -- 9.1.3 Key properties as electrolytes -- 9.2 Ionic liquids as Li and Lithium-ion battery electrolytes -- 9.3 Functional ionic liquid electrolytes -- 9.3.1 Overview of functional ionic liquids -- 9.3.2 Solid electrolyte interphase -- 9.3.3 Transport of lithium ions -- 9.3.4 Electroactive ionic liquids as redox shuttles -- 9.3.5 Perspectives -- References -- 10 Solid polymer proton conducting electrolytes for fuel cells -- 10.1 Introduction -- 10.2 Proton exchange membranes -- 10.2.1 Nafion® -- 10.2.2 Alternative sulfonated ionomers and membranes -- 10.3 Characterization of solid polymer electrolytes -- 10.3.1 Proton conductivity -- 10.3.2 States of water and water mobility -- 10.4 Summary -- Acknowledgments -- References -- 11 Supercritical adsorption of hydrogen on m icroporous adsorbents -- 11.1 Introduction -- 11.2 Fundamentals of supercritical adsorption -- 11.3 Supercritical adsorption isotherms -- 11.3.1 Virial expansion of the excess density in terms of pressure -- 11.3.2 Basic analytic models of the adsorption isotherm -- 11.3.3 Self-consistent approaches -- 11.4 The thermodynamics of adsorption -- 11.4.1 Properties of surface potential -- 11.5 Microporous adsorbents for hydrogen storage -- 11.5.1 Activated carbons -- 11.5.2 Single wall nanotubes -- 11.5.3 Metal organic frameworks -- References.

Part III: New trends in sustainable development and biomedical applications -- 12 Advanced materials for biomedical applications -- 12.1 Introduction -- 12.2 History of biomaterials -- 12.3 Basics in material science for biomaterial applications -- 12.3.1 Biomaterial properties -- 12.3.2 Biometals -- 12.3.3 Bioceramics -- 12.3.4 Biosynthetic polymers -- 12.3.5 Natural polymers -- 12.4 Biomedical applications -- 12.4.1 Cardiovascular system -- 12.4.2 Musculoskeletal system -- 12.4.3 Visceral organs -- 12.4.4 Nervous system and sensory organs -- 12.4.5 Esthetic applications -- 12.4.6 Skin -- 12.5 Future trends -- 12.5.1 Tissue engineering basic concepts -- 12.5.2 Scaffolds -- 12.5.3 Surface modification -- 12.5.4 Stem cells -- 12.5.5 Bioreactors -- 12.5.6 Computational models -- 12.6 Summary -- References -- 13 Nanoparticles for magnetic resonance imaging (MRI) applications in medicine -- 13.1 The basics of MRI in medicine -- 13.2 Relaxivity: the performance of MRI contrast agents -- 13.3 Synthesis and characterization of magnetic nanoparticles -- 13.3.1 Synthesis of magnetic nanocrystals -- 13.3.2 Nanoparticle coatings for MRI applications -- 13.3.3 Physicochemical characterization -- 13.4 Physical properties of magnetic nanoparticles -- 13.5 MR relaxation properties of magnetic nanoparticles -- 13.5.1 Relaxivity of paramagnetic CAs -- 13.5.2 Relaxivity of superparamagnetic CAs -- 13.5.3 Relaxometric performance of MRI CAs at clinical magnetic field strengths -- 13.6 Biological performance of magnetic nanoparticles for MRI -- 13.6.1 In vivo barriers -- 13.6.2 Impact of nanoparticle size and surface on colloidal stability and blood retention -- 13.6.3 Directing nanoparticles in vivo -- 13.6.4 Toxicity -- 13.7 Summary -- References -- 14 Microfluidics for synthesis and biological functional materials: from device fabrication to applications.

14.1 Introduction -- 14.2 A practical introduction to microfluidic reactors for material synthesis -- 14.2.1 Microfluidic reactor geometries -- 14.2.2 Device fabrication materials -- 14.2.3 Fabrication of polymer-based planar microreactors and components -- 14.3 Manipulating and measuring precursor reagent streams in microchannels -- 14.3.1 High surface area to volume ratios in microchannels -- 14.3.2 Rapid heat transfer -- 14.3.3 Control of concentrations -- 14.3.4 Controlling "time on chip" -- 14.3.5 Control of hydrodynamics and mass transfer -- 14.3.6 Characterization in microchannels -- 14.4 Microfluidics for polymer microparticles -- 14.4.1 Manipulating the shaping of liquid precursors -- 14.4.2 Effect of the channel wall -- 14.4.3 Emulsification of precursor droplets -- 14.4.4 Channel geometries to achieve emulsified droplets -- 14.4.5 Multiple emulsions -- 14.4.6 Forming linear threads and two-dimensional interfaces -- 14.4.7 Converting liquid precursors into solid micro-materials -- 14.4.8 Scale up: a circuit analysis of microfluidic flow in a highly parallelized microreactor -- 14.5 Microfluidics for synthesis of functional nanoparticles -- 14.5.1 Microfluidics for highly controlled nanoparticle synthesis -- 14.6 Biomaterials -- 14.6.1 Tissue engineering and membranes -- 14.6.2 Microenvironments for encapsulated cells -- 14.6.3 Biofilms -- 14.6.4 Microdevices utilizing functional biomaterials -- 14.7 Summary -- Acknowledgments -- References -- 15 Protein- and peptide-based materials: a source of inspiration for innovation -- 15.1 Introduction -- 15.2 Basics of proteins, peptides and polypeptides -- 15.2.1 Polypeptides are sequences of amino acids -- 15.2.2 Polypeptides can adopt various conformations -- 15.2.3 Polypeptides possess various levels of structural organization -- 15.3 Functional materials from fibrous proteins.

15.3.1 Resilin & abductin.
Abstract:
Functional organic materials are increasingly important in cutting-edge applications such as energy production, storage and conversion, biomedicine and sustainable development. Top-notch specialists have created a unique and timely overview for undergraduate (final year) and graduate students with a background in chemistry but should also be useful for physicists and engineers.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: