Cover image for Beyond CMOS Nanodevices 1.
Beyond CMOS Nanodevices 1.
Title:
Beyond CMOS Nanodevices 1.
Author:
Balestra, Francis.
ISBN:
9781118984857
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (457 pages)
Contents:
Cover -- Title Page -- Copyright -- Contents -- Acknowledgments -- General Introduction -- Part 1. Silion Nanowire Biochemical Sensors -- Part 1. Introduction -- Chapter 1. Fabrication Of Nanowires -- 1.1. Introduction -- 1.2. Silicon nanowire fabrication with electron beam lithography -- 1.2.1. Key requirements -- 1.2.2. Why electron beam lithography? -- 1.2.3. Lithographic requirements -- 1.2.4. Tools, resist materials and development processes -- 1.2.5. Exposure strategies and proximity effect correction -- 1.2.6. Technology limitations and how to circumvent them -- 1.3. Silicon nanowire fabrication with sidewall transfer lithography -- 1.4. Si nanonet fabrication -- 1.4.1. Si NWs fabrication -- 1.4.2. Si nanonet assembling -- 1.4.3. Si nanonet morphology and properties -- 1.5. Acknowledgments -- 1.6. Bibliography -- Chapter 2. Functionalization Of Si-Based NW FETs For DNA Detection -- 2.1. Introduction -- 2.2. Functionalization process -- 2.3. Functionalization of Si nanonets for DNA biosensing -- 2.3.1. Detection of DNA hybridization on the Si nanonet by fluorescence microscopy -- 2.3.2. Preliminary electrical characterizations of NW networks -- 2.4. Functionalization of SiC nanowire-based sensor for electrical DNA biosensing -- 2.4.1. SiC nanowire-based sensor functionalization process -- 2.4.2. DNA electrical detection from SiC nanowire-based sensor -- 2.5. Acknowledgments -- 2.6. Bibliography -- Chapter 3. Sensitivity Of Silicon Nanowire Biochemical Sensors -- 3.1. Introduction -- 3.1.1. Definitions -- 3.1.2. Main parameters affecting the sensitivity -- 3.2. Sensitivity and noise -- 3.3. Modeling the sensitivity of Si NW biosensors -- 3.3.1. Modeling the electrolyte -- 3.4. Sensitivity of random arrays of 1D nanostructures -- 3.4.1. Electrical characterization.

3.4.2. Low-frequency noise characterization -- 3.4.3. Simulation of electron conduction in random networks of 1D nanostructures -- 3.4.4. Discussion -- 3.5. Conclusions -- 3.6. Acknowledgments -- 3.7. Bibliography -- Chapter 4. Integration Of Silicon Nanowires With CMOS -- 4.1. Introduction -- 4.2. Overview of CMOS process technology -- 4.3. Integration of silicon nanowire after BEOL -- 4.4. Integration of silicon nanowires in FEOL -- 4.5. Sensor architecture design -- 4.6. Conclusions -- 4.7. Bibliography -- Chapter 5. Portable, Integrated Lock-In-Amplifier-Based System For Real-Time Impedimetric Measurements On Nanowires Biosensors -- 5.1. Introduction -- 5.2. Portable stand-alone system -- 5.3. Integrated impedimetric interface -- 5.4. Impedimetric measurements on nanowire sensors -- 5.5. Bibliography -- Part 2. New Materials, Devices And Technologies For Energy Harvesting -- Part 2. Introduction -- Chapter 6. Vibrational Energy Harvesting -- 6.1. Introduction -- 6.2. Piezoelectric energy transducer -- 6.2.1. Introduction -- 6.2.2. State-of-the-art devices and materials -- 6.2.3. MEMS piezoelectric vibration energy harvesting transducers -- 6.2.4. RMEMS prototypes characterization and discussions of experimental results -- 6.2.5. Near field characterization techniques -- 6.2.6. Dedicated electro-mechanical models for piezoelectric transducer design -- 6.3. Electromagnetic energy transducers -- 6.3.1. Introduction -- 6.3.2. State-of-the-art devices and materials -- 6.3.3. Vibration energy harvester exploiting both the piezoelectric and electromagnetic effect -- 6.3.4. Device design -- 6.4. Bibliography -- Chapter 7. Thermal Energy Harvesting -- 7.1. Introduction -- 7.1.1. Basics of thermoelectric conversion -- 7.1.2. Strategies to increase ZT -- 7.1.3. Heavy-metal-free TE generation.

7.1.4. Alternatives to TE harvesting for self-powered solid-state microsystems -- 7.2. Thermal transport at nanoscale -- 7.2.1. Brief review of nanoscale thermal conductivity -- 7.2.2. The effect of phonon confinement -- 7.2.3. Fabrication of ultrathin free-standing silicon membranes -- 7.2.4. Advanced methods of characterizing phonon dispersion, lifetimes and thermal conductivity -- 7.3. Porous silicon for thermal insulation on silicon wafers -- 7.3.1. Introduction -- 7.3.2. Thermal conductivity of nanostructured porous Si -- 7.3.3. Thermal isolation using thick porous Si layers -- 7.3.4. Thermoelectric generator using porous Si thermal isolation -- 7.4. Spin dependent thermoelectric effects -- 7.4.1. Physical principle and interest for thermal energy harvesting -- 7.4.2. Demonstration of the magnon drag effect -- 7.5. Composites of thermal shape memory alloy and piezoelectric materials -- 7.5.1. Introduction -- 7.5.2. Physical principle and interest for thermal energy harvesting -- 7.5.3. Novelty and realizations -- 7.5.4. Theoretical considerations -- 7.5.5. Examples of use -- 7.5.6. Summary of composite harvesting by the combination of SMA and piezoelectric materials -- 7.6. Conclusions -- 7.7. Bibliography -- Chapter 8. Nanowire Based Solar Cells -- 8.1 Introduction -- 8.2. Design of NW-based solar cells -- 8.2.1. Geometrical optimization of NW-based solar cells by numerical simulations -- 8.2.2. TCAD simulation of NW-based solar cells -- 8.3. Fabrication and opto-electrical characterization of NW-based solar cells -- 8.3.1. Elaboration of NW-based solar cells -- 8.3.2. Opto-electrical characterization of NW-based solar cells -- 8.4 Conclusion -- 8.5 Acknowledgments -- 8.6 Bibliography -- Chapter 9. Smart Energy Management And Conversion -- 9.1. Introduction.

9.2. Power management solutions for energy harvesting devices -- 9.2.1. Ultra-low voltage thermoelectric energy harvesting -- 9.2.2. Sub-1mW photovoltaic energy harvesting -- 9.2.3. Piezoelectric and micro-electromagnetic energy harvesting -- 9.2.4. DC/DC power management for future micro-generator -- 9.3. Sub-mW energy storage solutions -- 9.4. Conclusions -- 9.5. Bibliography -- Part 3. On-Chip Electronic Cooling -- Chapter 10. Tunnel Junction Electronic Coolers -- 10.1. Introduction and motivation -- 10.1.1. Existing cryogenic technology -- 10.2. Tunneling junctions as coolers -- 10.2.1. The NIS junction -- 10.2.2. Cooling power -- 10.2.3. Thermometry -- 10.2.4. The superconductor-insulator-normal metal-insulator-superconductor (SINIS) structure -- 10.2.5. Double junction superconductor-silicon-superconductor (SSmS) cooler -- 10.3. Limitations to cooling -- 10.3.1. States within the superconductor gap -- 10.3.2. Joule heating -- 10.3.3. Series resistance -- 10.3.4. Quasi-particle-related heating -- 10.3.5. Andreev reflection -- 10.4. Heavy fermion-based coolers -- 10.5. Summary -- 10.6. Bibliography -- Chapter 11. Silicon-Based Cooling Elements -- 11.1. Introduction to semiconductor-superconductor tunnel junction coolers -- 11.2. Silicon-based Schottky barrier junctions -- 11.3. Carrier-phonon coupling in strained silicon -- 11.3.1. Measurement of electron-phonon coupling constant -- 11.4. Strained silicon Schottky barrier mK coolers -- 11.5. Silicon mK coolers with an oxide barrier [GUN 13] -- 11.5.1. Reduction of sub-gap leakage -- 11.5.2. Effects of strain -- 11.6. The silicon cold electron bolometer -- 11.7. Integration of detector and electronics -- 11.8. Summary and future prospects -- 11.9. Acknowledgments -- 11.10 Bibliography.

Chapter 12. Thermal Isolation Through Nanostructuring -- 12.1. Introduction -- 12.2. Lattice cooling by physical nanostructuring -- 12.3. Porous Si membranes as cryogenic thermal isolation platforms -- 12.3.1. Porous Si micro-coldplates -- 12.3.2. Porous Si thermal conductivity -- 12.4. Crystalline membrane platforms -- 12.4.1. Strained germanium membranes -- 12.4.2. Thermal conductance measurements in Si and Ge membranes -- 12.4.3. Epitaxy-compatible thermal isolation platform -- 12.5. Summary of thermal conductance measurements -- 12.6. Acknowledgments -- 12.7. Bibliography -- Part 4. New Materials, Devices And Technologies For RF Applications -- Part 4. Introduction -- Chapter 13. Substrate Technologies For Silicon-Integrated RF and mm-Wave Passive Devices -- 13.1. Introduction -- 13.2. High-resistivity Si substrate for RF -- 13.2.1. Losses along coplanar waveguide transmission lines -- 13.2.2. Crosstalk -- 13.2.3. Nonlinearities along CPW lines -- 13.3. Porous Si substrate technology -- 13.3.1. General properties of porous Si -- 13.3.2. Dielectric properties of porous Si -- 13.3.3. Broadband electrical characterization of CPWT Lines on porous Si -- 13.3.4. Inductors on porous Si -- 13.3.5. Antennas on porous Si -- 13.4. Comparison between HR Si and local porous Si substrate technologies -- 13.4.1. Comparison of similar CPW TLines on different substrates -- 13.4.2. Comparison of inductors on different RF substrates -- 13.5. Design of slow-wave CPWs and filters on porous silicon -- 13.5.1. Slow-wave CPW TLines on porous Si -- 13.5.2. Simulation results for S-CPW TLines -- 13.5.3. Stepped impedance low-pass filter on porous silicon -- 13.5.4. Simulation results for filters -- 13.6. Conclusion -- 13.7. Acknowledgments -- 13.8. Bibliography.

Chapter 14. Metal Nanolines And Antennas For RF and mm-Wave Applications.
Abstract:
This book offers a comprehensive review of the state-of-the-art in innovative Beyond-CMOS nanodevices for developing novel functionalities, logic and memories dedicated to researchers, engineers and students.  It particularly focuses on the interest of nanostructures and nanodevices (nanowires, small slope switches, 2D layers, nanostructured materials, etc.) for advanced More than Moore (RF-nanosensors-energy harvesters, on-chip electronic cooling, etc.) and Beyond-CMOS logic and memories applications.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: