Cover image for In-Situ Electron Microscopy at High Resolution.
In-Situ Electron Microscopy at High Resolution.
Title:
In-Situ Electron Microscopy at High Resolution.
Author:
Banhart, Florian.
ISBN:
9789812797346
Personal Author:
Physical Description:
1 online resource (318 pages)
Contents:
CONTENTS -- Chapter 1 Introduction to In-Situ Electron Microscopy Florian Banhart -- 1. Definition and History of In-Situ Electron Microscopy -- 2. Modern In-Situ Electron Microscopy -- 3. The Techniques of In-Situ Electron Microscopy -- 4. Limitations of in-situ Electron Microscopy and Future Demands -- 5. Concept of this Book -- References -- Chapter 2 Observation of Dynamic Processes using Environmental Transmission or Scanning Transmission Electron Microscopy Renu Sharma -- 1. Introduction -- 2. Environmental Scanning/Transmission Electron Microscope -- 2.1. Windowed cell -- 2.2. Differential pumping systems -- 3. Experimental Planning Strategies -- 5. Data Collection -- 6. Applications -- 6.1. Nanoscale characterization during synthesis -- 6.1.1. Effect of the environment on nanoparticle morphology -- 6.1.2. Effect of support on nanoparticle morphology -- 6.1.3. Nanoparticle synthesis by de-hydroxylation -- 6.1.3. Chemical vapor deposition (CVD) -- 6.2. Effect of environment on catalytic activity -- 6.3. Effect of humidity on aerosol particles -- 7. Limitations -- Conclusions -- Acknowledgments -- References -- Chapter 3 In-Situ High-Resolution Observation of Solid-Solid, Solid-Liquid and Solid-Gas Reactions Hiroyasu Saka -- 1. Introduction -- 2. Specimen-Heating Holders -- 3. Solid-Solid Reactions -- 3.1. Formation of SiC via solid-state reaction and behaviour of grain boundary in SiC -- 3.2. Vibration of a grain boundary and an interface -- 4. Solid-Liquid Reactions -- 4.1. Melting of metals with small dimensions -- 4.1.1. Melting of embedded particles -- 4.1.2. Melting of a wedge-shaped crystal -- 4.1.3. Melting of a conical needle -- 4.2. Solid-liquid interfaces -- 4.2.1. Pure metals -- 4.2.2. Alumina -- 4.2.3. Al-Si alloy -- 4.3. Wetting of liquid metals on non-metallic substrates -- 4.3.1. Au liquid on Si substrate -- 4.3.2. Al on Si.

4.3.3. Size dependence of the wetting angle of liquid metals on non-metallic substrates -- 5. Solid-Gas Reactions -- 5.1. Oxidation of Si -- 5.2. Three-way catalyst -- 6. Conclusions and Outlook -- Acknowledgments -- References -- Chapter 4 In-Situ Transmission Electron Microscopy: Nanoindentation and Straining Experiments Wouter A. Soer and Jeff T. De Hosson -- 1. Introduction -- 2. In-Situ Nanoindentation in a TEM -- 2.1. Stage design -- 2.2. Specimen geometry -- 3. Experimental Procedure -- 3.1. Specimen preparation and microstructure -- 3.2. In-situ and exsitu nanoindentation experiments -- 4. Dislocation Dynamics in Al and Al-Mg Thin Films -- 4.1. In-situ observations of dislocation propagation -- 4.2. Serrated yielding in Al-Mg alloys -- 4.3. Effect of solute drag on load-controlled indentation curves -- 4.4. Effect of solute drag on displacement-controlled indentation -- 5. Grain Boundary Dynamics in Al and Al-Mg Thin Films -- 6. Superplastic Behavior of Coarse-Grained Al-Mg Alloys -- 6.1. In-situ TEM straining experiments -- 6.2. Dislocation substructure -- 6.3. In-situ observations of substructure evolution -- 7. Conclusions -- Acknowledgments -- References -- Chapter 5 In-Situ HRTEM Studies of Interface Dynamics During Solid-Solid Phase Transformations in Metal Alloys James M. Howe -- 1. Introduction -- 2. In-Situ Hot-Stage HRTEM of Interphase Boundaries -- 3. Example Studies -- 3.1. Diffuse coherent interface in Au-Cu alloy -- 3.2. Partly coherent interfaces in Al-Cu-Mg-Ag alloy -- 3.2.1. Structural and kinetic analyses in an edge-on orientation -- 3.2.2. Structural and kinetic analyses in a face-on orientation -- 3.3. Incoherent interface in Ti-Al alloy -- 4. Summary and Outlook -- Acknowledgments -- References.

Chapter 6 In-Situ TEM of Filled Nanotubes: Heating, Electron Irradiation, Electrical and Mechanical Probing Dmitri Golberg and Yoshio Bando -- 1. Introduction -- 2. Basic TEM Setup -- 3. In-Situ Thermal Heating/Cooling Experiments on Filled Nanotubes -- 3.1. Filled carbon nanotubes -- 3.2. Alternative filled inorganic nanotubes performing as nanothermometers: in-situ TEM heating -- 4. In-Situ Electron Irradiation Experiments on Filled Nanotubes -- 4.1. Filled carbon nanotubes -- 4.2. Filled boron nitride nanotubes -- 4.3. Filled silica nanotubes -- 5. Electrical Probing Experiments on Filled Nanotubes -- 5.1. Ferromagnet-filled carbon nanotubes -- 5.2. Ceramic-filled BN nanotubes -- 6. Mechanical Deformation of Filled BN Nanotubes -- 7. Concluding Remarks -- Acknowledgments -- References -- Chapter 7 In-Situ Ion and Electron Beam Effects on the Fabrication and Analysis of Nanomaterials Kazuo Furuya, Minghui Song, and Masayuki Shimojo -- 1. Introduction -- 2. In-Situ TEM Studies of Ion Implanted Structures -- 2.1. Introduction of In-situ ion implantation experiments -- 2.2. Instruments with ion beam interfaces -- 2.3. Irradiation induced phase transformations -- 2.4. Nano-inclusions in materials -- 2.5. Xe and inert gas in metals -- 2.5.1. Nucleation and fluctuation of Xe nanocrystals -- 2.5.2. Motion of atoms in a Xe nanocrystal -- 2.5.3. Coalescence of Xe nanocrystals -- 2.5.4. Ordering in a fluid Xe inclusion contained in Al metal -- 3. In-Situ Studies of Electron Beam-Induced Deposition (EBID) -- 3.1. Introduction of EBID -- 3.2. Mechanisms of EBID -- 3.3. Resolution limit -- 3.4. Materials and precursors for EBID -- 3.4.1. Overview of precursors for metal deposition -- 3.4.2. Iron and iron-compound deposition -- 3.5. Applications of EBID -- 3.5.1. Mask repair and device fabrication -- 3.5.2. Field emitters -- 3.5.3. Carbon nanotube growth.

4. Conclusions and Outlook -- Acknowledgments -- References -- Chapter 8 Electron Irradiation of Nanomaterials in the Electron Microscope Florian Banhart -- 1. Introduction -- 2. Irradiation of Solids with Electrons -- 2.1. Mechanisms of electron-solid interaction -- 2.1.1. Electronic excitations -- 2.1.2. Atom displacements -- 2.2. Defects generated under electron irradiation -- 3. The Experimental Techniques of In-Situ Electron Microscopy in the Study of Irradiation Effects -- 4. Electron Irradiation Effects in Nanoparticles -- 4.1. Basic principles of irradiation of small objects -- 4.2. Irradiation effects in nanometer-sized crystals -- 4.3. Irradiation effects in graphitic nanoparticles -- 4.3.1. Radiation defects in graphitic structures -- 4.3.2. Carbon nanotubes -- 4.3.3. Carbon onions -- 4.4. Phase transformations in nanoparticles under irradiation -- 5. Conclusions -- Acknowledgments -- References -- Chapter 9 In-Situ Observation of Atomic Defects in Carbon Nanostructures Kazu Suenaga -- 1. Introduction -- 2. Mono-vacancy Formation in SWNT -- 3. Formation and Relaxation of Inter-Layer Defects in a Graphite Gap -- 4. Atomic Migration through Defects of Fullerenes in Nano-Peapods -- 5. Conclusions and Outlook -- Acknowledgments -- References -- Index.
Abstract:
In-situ high-resolution electron microscopy is a modern and powerful technique in materials research, physics, and chemistry. In-situ techniques are hardly treated in textbooks of electron microscopy. Thus, there is a need to collect the present knowledge about the techniques and achievements of in-situ electron microscopy in one book. Since high-resolution electron microscopes are available in most modern laboratories of materials science, more and more scientists or students are starting to work on this subject.In this comprehensive volume, the most important techniques and achievements of in-situ high-resolution electron microscopy will be reviewed by renowned experts. Applications in several fields of materials science will also be demonstrated.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: