Cover image for Atomic Force Microscopy in Liquid : Biological Applications.
Atomic Force Microscopy in Liquid : Biological Applications.
Title:
Atomic Force Microscopy in Liquid : Biological Applications.
Author:
Baró, Arturo M.
ISBN:
9783527649839
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (384 pages)
Contents:
Atomic Force Microscopy in Liquid -- Contents -- Preface -- List of Contributors -- Part I General Atomic Force Microscopy -- 1 AFM: Basic Concepts -- 1.1 Atomic Force Microscope: Principles -- 1.2 Piezoelectric Scanners -- 1.2.1 Piezoelectric Scanners for Imaging in Liquids -- 1.3 Tips and Cantilevers -- 1.3.1 Cantilever Calibration -- 1.3.2 Tips and Cantilevers for Imaging in Liquids -- 1.3.3 Cantilever Dynamics in Liquids -- 1.4 Force Detection Methods for Imaging in Liquids -- 1.4.1 Piezoelectric Cantilevers and Tuning Forks -- 1.4.2 Laser Beam Deflection Method -- 1.4.2.1 Liquid Cells and Beam Deflection -- 1.5 AFM Operation Modes: Contact, Jumping/Pulsed, Dynamic -- 1.5.1 Contact Mode -- 1.5.2 Jumping and Pulsed Force Mode -- 1.5.3 Dynamic Modes -- 1.5.3.1 Liquid Cells and Dynamic Modes -- 1.6 The Feedback Loop -- 1.7 Image Representation -- 1.8 Artifacts and Resolution Limits -- 1.8.1 Artifacts Related to the Geometry of the Tip -- 1.8.2 Artifacts Related to the Feedback Loop -- 1.8.3 Resolution Limits -- Acknowledgments -- References -- 2 Carbon Nanotube Tips in Atomic Force Microscopy with Applications to Imaging in Liquid -- 2.1 Introduction -- 2.2 Fabrication of CNT AFM Probes -- 2.2.1 Mechanical Attachment -- 2.2.2 CNT Attachment Techniques Employing Magnetic and Electric Fields -- 2.2.3 Direct Growth of CNT Tips -- 2.2.4 Emerging CNT Attachment Techniques -- 2.2.5 Postfabrication Modification of the CNT Tip -- 2.2.5.1 Shortening -- 2.2.5.2 Coating with Metal -- 2.3 Chemical Functionalization -- 2.3.1 Functionalization of the CNT Free End -- 2.3.2 Coating the CNT Sidewall -- 2.4 Mechanical Properties of CNTs in Relation to AFM Applications -- 2.4.1 CNT Atomic Structure -- 2.4.2 Mechanical Properties of CNT AFM Tips -- 2.5 Dynamics of CNT Tips in Liquid -- 2.5.1 Interaction of Microfabricated AFM Tips and Cantilevers in Liquid.

2.5.2 CNT AFM Tips in Liquid -- 2.5.3 Interaction of CNT with Liquids -- 2.5.3.1 CNT Tips at the Air-Liquid Interface During Approach -- 2.5.3.2 CNT Tips at the Liquid-Solid Interface -- 2.5.3.3 CNT Tips at the Air-Liquid Interface during Withdrawal -- 2.6 Performance and Resolution of CNT Tips in Liquid -- 2.6.1 Performance of CNT AFM Tips When Imaging in Liquid -- 2.6.2 Biological Imaging in Liquid Medium with CNT AFM Tips -- 2.6.3 Cell Membrane Penetration and Applications of Intracellular CNT AFM Probes -- References -- 3 Force Spectroscopy -- 3.1 Introduction -- 3.2 Measurement of Force Curves -- 3.2.1 Analysis of Force Curves Taken in Air -- 3.2.2 Analysis of Force Curves in a Liquid -- 3.3 Measuring Surface Forces by the Surface Force Apparatus -- 3.4 Forces between Macroscopic Bodies -- 3.5 Theory of DLVO Forces between Two Surfaces -- 3.6 Van der Waals Forces - the Hamaker Constant -- 3.7 Electrostatic Force between Surfaces in a Liquid -- 3.8 Spatially Resolved Force Spectroscopy -- 3.9 Force Spectroscopy Imaging of Single DNA Molecules -- 3.10 Solvation Forces -- 3.11 Hydrophobic Forces -- 3.12 Steric Forces -- 3.13 Conclusive Remarks -- Acknowledgments -- References -- 4 Dynamic-Mode AFM in Liquid -- 4.1 Introduction -- 4.2 Operation Principles -- 4.2.1 Amplitude and Phase Modulation AFM (AM- and PM-AFM) -- 4.2.2 Frequency-Modulation AFM (FM-AFM) -- 4.3 Instrumentation -- 4.3.1 Cantilever Excitation -- 4.3.2 Cantilever Deflection Measurement -- 4.3.3 Operating Conditions -- 4.3.4 AM-AFM -- 4.3.4.1 FM-AFM -- 4.3.4.2 PM-AFM -- 4.4 Quantitative Force Measurements -- 4.4.1 Calibration of Spring Constant -- 4.4.2 Conservative and dissipative forces -- 4.4.3 Solvation Force Measurements -- 4.4.3.1 Inorganic Solids in Nonpolar Liquids -- 4.4.3.2 Measurements in Pure Water -- 4.4.3.3 Solvation Forces in Biological Systems.

4.4.4 Single-Molecule Force Spectroscopy -- 4.4.4.1 Unfolding and ''Stretching'' of Biomolecules -- 4.4.4.2 Ligand-Receptor Interactions -- 4.5 High-Resolution Imaging -- 4.5.1 Solid Crystals -- 4.5.2 Biomolecular Assemblies -- 4.5.3 Water Distribution -- 4.6 Summary and Future Prospects -- References -- 5 Fundamentals of AFM Cantilever Dynamics in Liquid Environments -- 5.1 Introduction -- 5.2 Review of Fundamentals of Cantilever Oscillation -- 5.3 Hydrodynamics of Cantilevers in Liquids -- 5.4 Methods of Dynamic Excitation -- 5.4.1 Review of Cantilever Excitation Methods -- 5.4.2 Theory -- 5.4.2.1 Direct Forcing -- 5.4.2.2 Ideal Piezo/Acoustic -- 5.4.2.3 Thermal -- 5.4.2.4 Comparison of Excitation Methods -- 5.4.3 Practical Considerations for Acoustic Method -- 5.4.4 Photothermal Method -- 5.4.5 Frequency Modulation Considerations in Liquids -- 5.5 Dynamics of Cantilevers Interacting with Samples in Liquids -- 5.5.1 Experimental Observations of Oscillating Probes Interacting with Samples in Liquids -- 5.5.2 Modeling and Numerical Simulations of Oscillating Probes Interacting with Samples in Liquids -- 5.5.3 Compositional Mapping in Liquids -- 5.5.4 Implications for Force Spectroscopy in Liquids -- 5.6 Outlook -- References -- 6 Single-Molecule Force Spectroscopy -- 6.1 Introduction -- 6.1.1 Why Single-Molecule Force Spectroscopy? -- 6.1.2 SMFS in Biology -- 6.1.3 SMFS Techniques and Ranges -- 6.2 AFM-SMFS Principles -- 6.2.1 Length-Clamp Mode -- 6.2.2 Force-Clamp Mode -- 6.3 Dynamics of Adhesion Bonds -- 6.3.1 Bond Dissociation Dynamics in Length Clamp -- 6.3.2 General Considerations -- 6.3.3 Bond Dissociation Dynamics in Force Clamp -- 6.3.3.1 The Need for Robust Statistics -- 6.4 Specific versus Other Interactions -- 6.4.1 Intramolecular Single-Molecule Markers -- 6.4.1.1 The Wormlike Chain: an Elasticity Model -- 6.4.1.2 Proteins.

6.4.1.3 DNA and Polysaccharides -- 6.4.2 Intermolecular Single-Molecule Markers -- 6.5 Steered Molecular Dynamics Simulations -- 6.6 Biological Findings Using AFM-SMFS -- 6.6.1 Titin as an Adjustable Molecular Spring in the Muscle Sarcomere -- 6.6.2 Monitoring the Folding Process by Force-Clamp Spectroscopy -- 6.6.3 Intermolecular Binding Forces and Energies in Pairs of Biomolecules -- 6.6.4 New Insights in Catalysis Revealed at the Single-Molecule Level -- 6.7 Concluding Remarks -- Acknowledgments -- Disclaimer -- References -- 7 High-Speed AFM for Observing Dynamic Processes in Liquid -- 7.1 Introduction -- 7.2 Theoretical Derivation of Imaging Rate and Feedback Bandwidth -- 7.2.1 Imaging Time and Feedback Bandwidth -- 7.2.2 Time Delays -- 7.3 Techniques Realizing High-Speed Bio-AFM -- 7.3.1 Small Cantilevers -- 7.3.2 Fast Amplitude Detector -- 7.3.3 High-Speed Scanner -- 7.3.4 Active Damping Techniques -- 7.3.5 Suppression of Parachuting -- 7.3.6 Fast Phase Detector -- 7.4 Substrate Surfaces -- 7.4.1 Supported Planar Lipid Bilayers -- 7.4.1.1 Choice of Alkyl Chains -- 7.4.1.2 Choice of Head Groups -- 7.4.2 Streptavidin 2D Crystal Surface -- 7.5 Imaging of Dynamic Molecular Processes -- 7.5.1 Bacteriorhodopsin Crystal Edge -- 7.5.2 Photoactivation of Bacteriorhodopsin -- 7.6 Future Prospects of High-Speed AFM -- 7.6.1 Imaging Rate and Low Invasiveness -- 7.6.2 High-Speed AFM Combined with Fluorescence Microscope -- 7.7 Conclusion -- References -- 8 Integration of AFM with Optical Microscopy Techniques -- 8.1 Introduction -- 8.1.1 Combining AFM with Fluorescence Microscopy -- 8.1.1.1 Epifluorescence Microscopy -- 8.1.2 Examples of Applications -- 8.1.2.1 Ca2+ Fluorescence Microscopy -- 8.1.2.2 AFM - Epifluorescence Microscopy -- 8.2 Combining AFM with IRM and TIRF microscopy -- 8.2.1 Interference Reflection Microscopy -- 8.2.1.1 Optical Setup.

8.2.2 Total Internal Reflection Fluorescence Microscopy -- 8.2.2.1 Optical Setup -- 8.2.2.2 Applications of Combined AFM-TIRF and AFM-IRM Microscopy -- 8.3 Combining AFM and FRET -- 8.3.1 FRET -- 8.3.2 FRET and Near-Field Scanning Optical Microscopy (NSOM) -- 8.4 FRET-AFM -- 8.5 Sample Preparation and Experiment Setup -- 8.5.1 Cell Culture, Transfection, and Fura-Loading -- 8.5.2 Cantilever Preparation -- 8.5.3 Typical Experimental Procedure -- References -- Part II Biological Applications -- 9 AFM Imaging in Liquid of DNA and Protein-DNA Complexes -- 9.1 Overview: the Study of DNA at Nanoscale Resolution -- 9.2 Sample Preparation for AFM Imaging of DNA and Protein-DNA Complexes -- 9.3 AFM of DNA in Aqueous Solutions -- 9.3.1 Elevated Resolution in Aqueous Solutions -- 9.3.2 Segmental Mobility of DNA -- 9.4 AFM Imaging of Alternative DNA Conformations -- 9.4.1 Cruciforms in DNA -- 9.4.2 Intramolecular Triple Helices -- 9.4.3 Four-Way DNA Junctions and DNA Recombination -- 9.5 Dynamics of Protein-DNA Interactions -- 9.5.1 Site-Specific Protein-DNA Complexes -- 9.5.2 Chromatin Dynamics Time-Lapse AFM -- 9.6 DNA Condensation -- 9.7 Conclusions -- Acknowledgments -- References -- 10 Stability of Lipid Bilayers as Model Membranes: Atomic Force Microscopy and Spectroscopy Approach -- 10.1 Biological Membranes -- 10.1.1 Cell Membrane -- 10.1.2 Supported Lipid Bilayers -- 10.2 Mechanical Characterization of Lipid Membranes -- 10.2.1 Breakthrough Force as a Molecular Fingerprint -- 10.2.2 AFM Tip-Lipid Bilayer Interaction -- 10.2.3 Effect of Chemical Composition on the Mechanical Stability of Lipid Bilayers -- 10.2.4 Effect of Ionic Strength on the Mechanical Stability of Lipid Bilayers -- 10.2.5 Effect of Different Cations on the Mechanical Stability of Lipid Bilayers -- 10.2.6 Effect of Temperature on the Mechanical Stability of Lipid Bilayers.

10.2.7 The Case of Phase-Segregated Lipid Bilayers.
Abstract:
About 40 % of current atomic force microscopy (AFM) research is performed in liquids, making liquid-based AFM a rapidly growing and important tool for the study of biological materials. This book focuses on the underlying principles and experimental aspects of AFM under liquid, with an easy-to-follow organization intended for new AFM scientists. The book also serves as an up-to-date review of new AFM techniques developed especially for biological samples. Aimed at physicists, materials scientists, biologists, analytical chemists, and medicinal chemists. An ideal reference book for libraries. From the contents: Part I: General Atomic Force Microscopy * AFM: Basic Concepts * Carbon Nanotube Tips in Atomic Force Microscopy with * Applications to Imaging in Liquid * Force Spectroscopy * Atomic Force Microscopy in Liquid * Fundamentals of AFM Cantilever Dynamics in Liquid * Environments * Single-Molecule Force Spectroscopy * High-Speed AFM for Observing Dynamic Processes in Liquid * Integration of AFM with Optical Microscopy Techniques Part II: Biological Applications * DNA and Protein-DNA Complexes * Single-Molecule Force Microscopy of Cellular Sensors * AFM-Based Single-Cell Force Spectroscopy * Nano-Surgical Manipulation of Living Cells with the AFM.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: