Cover image for Advances in Nanotechnology. Volume 4.
Advances in Nanotechnology. Volume 4.
Title:
Advances in Nanotechnology. Volume 4.
Author:
Bartul, Zacharie.
ISBN:
9781616685201
Personal Author:
Physical Description:
1 online resource (300 pages)
Series:
Advances in Nanotechnology ; v.4

Advances in Nanotechnology
Contents:
ADVANCES IN NANOTECHNOLOGY. VOLUME 4 -- ADVANCES IN NANOTECHNOLOGY. VOLUME 4 -- CONTENTS -- PREFACE -- Chapter 1 ZNO NANOSTRUCTURES DEPOSITED BY LASER ABLATION -- ABSTRACT -- 1. INTRODUCTION -- 1. A. Properties and Applications of Zinc Oxide and its Nanostructures -- 1. B. Growth Techniques for Zinc Oxide Nanostructures -- 2. ZINC OXIDE NANOSTRUCTURES BY LASER ABLATION -- 2. A. The Pulsed Laser Deposition Technique -- 2. B. Nanostructured Zinc Oxide by PLD in the World -- A. Kyushu University (Fukuoka, Japan), Fudan University (Shanghai, China), University of Miyazaki (Miyazaki, Japan) -- A1) Refs. [100,101 ,102 ,103] -- A2) Refs. [104,105 ,106 ,107 ,108 ,109] -- A3) Ref. [110] -- B) University of Bristol (Bristol, UK), Refs. [111,112,113,114 ,115] -- C) University of Delhi (Delhi, India), University of Puerto Rico (San Juan, Puerto Rico), Harbin Institute of Technology (Harbin, China) -- C1) Refs. [116,117] -- C2) Refs. [118] -- D) Osaka University (Osaka, Japan), Chiang Mai University (Muang Chiang Mai, Thailand), Ref. [119] -- E) Korea Institute of Science and Technology (Seoul, Republic of Korea), Ref. [120] -- F) Universität Leipzig (Leipzig, Germany), Martin-Luther-Universität (Halle (Saale), Germany), Refs. [121,122 ,123] -- G) National University of Singapore (Singapore), Nanyang Technological University (Singapore), Refs. [124,125] -- H) National Dong Hwa University (Shoufeng, Taiwan), University of Florida (Gainesville, Florida, USA), Ref. [126] -- I) Keio University (Yokohama, Japan), Ref. [127] -- J) Jawaharlal Nehru Centre for Advanced Scientific Research (Bangalore, India), Ref. [128] -- K) University of Canterbury (Christchurch, New Zealand), the Macdiarmid Institute of Advanced Materials and Nanotechnology (New Zealand), Ref. [129] -- L) University of Technology (Dalian, China), Ref. [130].

M) University of Salento (Lecce, Italy), Refs. [131,132] -- 3. OUR RESULTS -- 3. A. Experimental PLD Set-up and Deposition Parameters -- 3. B. Morphology -- 3.B.1. KrF- -- 3.B.2. ArF- -- 3.B.3. Comparison Between KrF and ArF -Deposited Samples -- 3. C. Summary of other Characterizations -- 3. D. Gas Sensing Tests -- 4. CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 2 MODELING EFECTIVECARBON NANOTUBES BY MOLECULAR MECHANICS -- ABSTRACT -- INTRODUCTION -- UP TO DATE RESEARCH -- MOLECULAR MECHANICS AND MATHEMATICAL MODELING -- DATA ANALYSIS AND DISCUSSIONS -- CLOSING COMMENTS -- ACKNOWLEGMENTS -- REFERENCES -- Chapter 3 GAS ADSORPTION SENSORS BASED ON HYBRID CARBON NANOTUBES -- 1. GENERAL INTRODUCTION -- THEORETICAL BACKGROUND -- GASES / VAPORS OF INTEREST -- 2. PRINCIPLE OF OPERATION -- 2.1. Physical Principles -- 2.2. Complex Impedance Measurement Principles -- 3. EXPERIMENTAL -- 3.1. Sensor Device Fabrication Process -- 3.1.1 Substrate Preparation -- 3.1.2. Drop Cast Film Process -- Suspension Preparation -- Film Deposition -- 3.2. Test System Setup -- 3.2.1. Test Chambers -- 3.2.2. Pneumatic System -- 3.2.3. Supporting Equipment -- 3.3. Sensor Testing Process -- 4. RESULTS -- 4.1. No2 Studies -- 4.1.1. Sensitivity To NO2 -- 4.1.2. Response Time to NO2 -- 4.1.2.1. Response to NO2 in Air -- 4.1.2.2. Response to Additions of 1 Ppm NO2 in Air -- 4.1.2.3. Response to Increasing NO2 in Air -- 4.2. Ethanol Studies -- 4.3.H2Studies -- 4.4. Co2 Studies -- 4.5. O2 Studies -- 5. DISCUSSION -- 5.1. Sensitivity -- 5.2. Selectivity -- 5.3. Hysteresis -- 6. CONCLUSIONS -- 7. SUMMARY -- Chapter 4 ZNO NANO-STRUCTURES FOR BIOSENSING APPLICATIONS: MOLECULAR DYNAMICS SIMULATIONS -- ABSTRACT -- 1. INTRODUCTION -- 2. CASES STUDY -- 2.1. ZnO Hexagonal Polar Surfaces Slab-Water Interaction (Wetting and Electrowetting).

2.2. ZnO Nanorods or Tubes Array-Water Interaction (Wetting and Electrowetting) -- 2.3. Water Permeation through ZnO Nanotube -- 2.4. Ionic Currents of Mg2+, Ca2+, K+, and Na+ Ions Through ZnO Nanotube -- 3. METHOD -- 3.1. Molecular Dynamics -- 3.2. BUILDING ZnO STRUCTURES -- 3.2.1. ZnO HEXAGONAL POLAR SLAB -- 3.2.2. ZnO NANORODS -- 3.2.3. ZnO NANOTUBE -- 3.3. ZnO- WATER SYSTEMS -- 3.3.1. Wetting -- 3.3.2. Electrowetting -- 3.3.3. Water Permeation -- 3.3.4. Ionic Currents -- 3.4. Water Density Profiles -- 4. RESULTS AND DISCUSSION -- 4.1. Density Profiles and WCA -- 4.2. WATER PERMEATION THROUGH ZnO NANOTUBE -- 4.3. SALT CONCENTRATION DEPENDENCE ON ZnO NANOTUBE IONIC CURRENTS -- 5. CONCLUSION -- REFERENCES -- Chapter 5 ADVANCES IN SURFACE FUNCTIONALIZATION OF CARBON NANOTUBES -- ABSTRACT -- INTRODUCTION -- NON-COVALENT FUNCTIONALIZATION OF NANOTUBES -- COVALENT FUNCTIONALIZATION OF NANOTUBES -- REFERENCES -- Chapter 6 LASER INTERFERENCE LITHOGRAPHY -- ABSTRACT -- 1. INTRODUCTION -- 2. FOUR-BEAM INTERFERENCE PATTERNS -- 2.1 Four-Beam Interference Pattern -- 2.2 Angle of Incidence -- 2.3 Polarization -- 2.4 Phase Difference -- 2.5 Intensities of the Laser Beams -- 2. EXPERIMENTAL RESULTS -- 3.1 Indirect Processing -- 3.1.1. Sample Preparation -- 3.1.2. Lil Setup -- 3.1.3. Characterization Method -- 3.1.4 Determining the Exposure Dose -- 3.1.5 Controlling the Feature Size -- 3.1.6 Four-beam induced modulations -- 3.2 Direct Writing -- 3.2.1 Experimental Setup and Simulated Pattern -- 3.2.2 Patterns and Features -- 3.2.3 Patterns Created on GaAs Wafer -- 3.2.4 Patterns Created on Sio2 (5 Nm)/GaAs Wafer -- 3.2.5 Patterns on other Wafers -- 4. CONCLUSION -- REFERENCES -- Chapter 7 TITANIUM DIOXIDE MEDIATED VISIBLE LIGHT PHOTOCATALYSIS: EFFECTS OF PARTICLE SIZE AND DOPING -- ABSTRACT -- INTRODUCTION -- EXPERIMENTAL -- Material Synthesis.

Measurements -- RESULTS AND DISCUSSION -- Estimation of Particle Size -- Photocatalytic Activity -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 8 AMORPHOUS TIO2 NANOPARTICLES REVIEW -- 1. INTRODUCTION -- 2. SYNTHESIS AND CHARACTERIZATION -- 2.1. Methods of Synthesis -- 2.2. Characterization -- 3. STRUCTURAL PROPERTIES -- 3.1. Experiments -- 3.2. Computer Simulations -- 3.3. Crystallization of Amorphous TiO2 Nanoparticles -- 4. PHYSICO-CHEMICAL PROPERTIES -- 4.1 Thermodynamic Properties -- 4.2. Optical and Photocatalytic Properties -- 4.3. Electronic and other Properties -- 5. CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 9 EXPERIMENTAL STUDIES FOR THE FABRICATION AND CHARACTERIZATION OF HYBRID MATERIALS OF DNA (ENCAPSULATED)/CARBON NANOTUBES -- I. STM/STS STUDY OF ELECTRON DENSITY OF STATES AT THE BASES SITES IN THE DNA ALTERNATING COPOLYMERS[1] -- II. FABRICATION AND STM-CHARACTERIZATION OF NOVEL HYBRID MATERIALS OF DNA/CARBON NANOTUBE.[11] -- III. SOME ELECTRONIC PROPERTIES AND MORPHOLOGICAL FEATURES OF HYBRID MATERIAL DNA/SWCNT THIN FILMS.[19] -- IV. PROBING INTERACTION BETWEEN SSDNA AND CARBON NANOTUBES BY RAMAN SCATTERING AND ELECTRON MICROSCOPY.[24] -- REFERENCES -- Chapter 10 EFFECT OF LEAD NANO PARTICLE PRESENT IN THE LEAF OF CALOTRPHIS GIGANTEA WHICH RESULT IN THE LOSS OF THE PAINTED GRASS HOPPER OF THE WESTERN GHATS SPECIES IN INDIA -- ABSTRACT -- INTRODUCTION -- IMPACT ON THE ECOSYSTEM -- Positive -- Negative -- MATERIALS AND METHODS -- Reagents and Apparatus for Lead -- RESULTS -- CONCLUSION -- REFERENCES -- INDEX.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: