Cover image for Biomass Gasification, Pyrolysis and Torrefaction : Practical Design and Theory.
Biomass Gasification, Pyrolysis and Torrefaction : Practical Design and Theory.
Title:
Biomass Gasification, Pyrolysis and Torrefaction : Practical Design and Theory.
Author:
Basu, Prabir.
ISBN:
9780123965431
Personal Author:
Edition:
2nd ed.
Physical Description:
1 online resource (551 pages)
Contents:
Front Cover -- Biomass Gasification, Pyrolysis, and Torrefaction -- Copyright Page -- Dedication -- Contents -- Preface -- Acknowledgments -- About the Author -- 1 Introduction -- 1.1 Biomass and its Products -- 1.1.1 Products of Biomass -- 1.1.1.1 Chemicals Industries -- 1.1.1.2 Energy Industries -- 1.1.1.3 Transport Industries -- 1.1.1.4 Environmental Industries -- 1.2 Biomass Conversion -- 1.2.1 Biochemical Conversion -- 1.2.2 Thermochemical Conversion -- 1.2.2.1 Combustion -- 1.2.2.2 Pyrolysis -- 1.2.2.3 Torrefaction -- 1.2.2.4 Gasification -- 1.2.2.5 Liquefaction -- 1.3 Motivation for Biomass Conversion -- 1.3.1 Renewability Benefits -- 1.3.2 Environmental Benefits -- 1.3.2.1 Carbon-Neutral Feature of Biomass -- 1.3.2.2 Sulfur Removal -- 1.3.2.3 Nitrogen Removal -- 1.3.2.4 Dust and Hazardous Gases -- 1.3.3 Sociopolitical Benefits -- 1.4 Historical Background -- 1.5 Commercial Attraction of Gasification -- 1.5.1 Comparison of Gasification and Combustion -- 1.6 Brief Description of Some Biomass Conversion Processes -- 1.6.1 Torrefaction -- 1.6.2 Pyrolysis -- 1.6.3 Combustion of Carbon -- 1.6.4 Gasification of Carbon -- 1.6.5 Syngas Production -- 1.6.6 Methanol Synthesis -- 1.6.7 Ammonia Synthesis -- 1.6.8 Fischer-Tropsch Reaction -- 1.6.9 Methanation Reaction -- Symbols and Nomenclature -- 2 Economic Issues of Biomass Energy Conversion -- 2.1 Introduction -- 2.2 Biomass Availability and Products -- 2.2.1 Availability Assessment -- 2.2.1.1 Energy Crop -- 2.2.1.2 Biomass Cost -- 2.2.2 Product Revenue from Biomass Conversion -- 2.2.2.1 Energy Revenue -- 2.2.2.2 Revenue from Chemicals -- 2.2.2.3 Revenue from Secondary Fuel Production -- 2.3 Biomass Conversion Process Plant Equipment and Cost -- 2.3.1 Biomass Collection System -- 2.3.2 Preprocessing -- 2.3.3 Gasifier Cost -- 2.3.4 Torrefier Cost -- 2.3.5 Pyrolyzer Cost.

2.3.6 Comparison of Capital Costs -- 2.4 Financial Analysis -- 2.4.1 Capital Cost Adjustment for Size and Time -- 2.4.1.1 Scale-Up with Size -- 2.4.1.2 Scale-Up with Time -- 2.4.2 Capital Requirement -- 2.4.3 Operation and Maintenance Cost -- 2.4.3.1 Carrying Charge -- 2.4.3.2 Revenue Requirement -- Symbols and Nomenclature -- 3 Biomass Characteristics -- 3.1 Introduction -- 3.2 What Is Biomass? -- 3.2.1 Biomass Formation -- 3.2.2 Types of Biomass -- 3.2.2.1 Lignocellulosic Biomass -- 3.2.2.2 Crops and Vegetables -- 3.2.2.3 Waste Biomass -- 3.3 Structure of Biomass -- 3.3.1 Structure of Wood -- 3.3.2 Constituents of Biomass Cells -- 3.3.2.1 Cellulose -- 3.3.2.2 Hemicellulose -- 3.3.2.3 Lignin -- 3.4 General Classification of Fuels -- 3.4.1 Atomic Ratio -- 3.4.2 Relative Proportions of Lignocellulosic Components -- 3.4.3 Ternary Diagram -- 3.5 Properties of Biomass -- 3.5.1 Physical Properties -- 3.5.1.1 Densities -- True Density -- Apparent Density -- Bulk Density -- Biomass (Growth) Density -- 3.5.2 Thermodynamic Properties -- 3.5.2.1 Thermal Conductivity -- 3.5.2.2 Specific Heat -- 3.5.2.3 Heat of Formation -- 3.5.2.4 Heat of Combustion (Reaction) -- 3.5.2.5 Heating Value -- 3.5.2.6 Ignition Temperature -- 3.6 Composition of Biomass -- 3.6.1 Ultimate Analysis -- 3.6.2 Proximate Analysis -- 3.6.2.1 Volatile Matter -- 3.6.2.2 Ash -- 3.6.2.3 Moisture -- Basis of Expressing Moisture -- Fixed Carbon -- Char -- 3.6.3 Thermogravimetric Analysis -- 3.6.4 Bases of Expressing Biomass Composition -- 3.6.4.1 As-Received Basis -- 3.6.4.2 Air-Dry Basis -- 3.6.4.3 Total Dry Basis -- 3.6.4.4 Dry Ash-Free Basis -- 3.6.5 Heating Value of Fuel -- 3.6.5.1 Higher Heating Value (HHV) -- 3.6.5.2 Lower Heating Value (LHV) -- 3.6.5.3 Bases for Expressing Heating Values -- 3.6.5.4 Estimation of Biomass Heating Values.

3.6.6 Stoichiometric Calculations for Complete Combustion -- 3.6.6.1 Amount of Product Gas of Complete Combustion -- 3.6.6.2 Composition of the Product of Combustion -- 3.6.7 Composition of the Product Gas of Gasification -- Symbols and Nomenclature -- Subscripts -- 4 Torrefaction -- 4.1 Introduction -- 4.2 What Is Torrefaction? -- 4.2.1 Pyrolysis, Carbonization, and Torrefaction -- 4.2.1.1 Difference Between Carbonization, Pyrolysis, and Torrefaction -- 4.3 Carbonization -- 4.3.1 Charcoal Fuel -- 4.3.2 Activated Charcoal -- 4.3.3 Biocoke -- 4.3.4 Biochar -- 4.4 Torrefaction Process -- 4.4.1 Heating Stages -- 4.4.1.1 Predrying -- 4.4.1.2 Drying -- 4.4.1.3 Postdrying Heating -- 4.4.1.4 Torrefaction -- 4.4.1.5 Cooling -- 4.4.2 Mechanism of Torrefaction -- 4.4.3 Effect of Design Parameters on Torrefaction -- 4.4.3.1 Temperature -- Core Temperature Rise -- 4.4.3.2 Residence Time -- 4.4.3.3 Biomass Type -- 4.4.3.4 Feed Size -- 4.5 Degree of Torrefaction -- 4.5.1 Mass Yield -- 4.5.2 Energy Density -- 4.5.3 Energy Yield -- 4.6 Physical Properties of Torrefied Biomass -- 4.6.1 Density and Volume -- 4.6.2 Grindability -- 4.6.2.1 Effect of Torrefaction Parameters on Grinding -- 4.6.3 Hydrophobicity of Torrefied Biomass -- 4.6.3.1 Why Biomass Becomes Hydrophobic after Torrefaction? -- 4.6.4 Explosion Potential of Torrefied Dust -- 4.6.5 Densification or Pelletization -- 4.7 Torrefaction Technologies -- 4.7.1 Classification of Torrefaction Reactors -- 4.7.1.1 Classification on Mode of Heating -- Directly Heated Reactors -- Convective Reactor (Moving/Fixed/Entrained Bed) -- Fluidized Bed -- Hydrothermal Reactor -- Indirectly Heated Reactors -- Rotating Drum -- Screw or Stationary Shaft -- Microwave -- 4.7.1.2 Classification on Mode of Gas-Solid Mixing -- 4.8 Design Methods -- 4.8.1 Design of Torrefaction Plant -- 4.8.1.1 Choice of Reactor Type.

4.8.1.2 Design Approach -- Design Input -- Mass and Energy Balance -- Dryer -- Torrefier -- Cooler -- Burner -- Unit Sizing -- Predrying Section -- Drying and Postdrying Sections -- Torrefier Section -- Burner Design -- Symbols and Nomenclature -- Subscripts -- Greek symbol -- Appendix: Mass and Energy Balance of Torrefier -- Assumptions -- Mass Balance -- Torrefier -- Oil Burner -- Energy Balance -- Torrefier: Control Volume of Torrefaction Zone -- Oil Burner: Control Volume of Oil Burner -- 5 Pyrolysis -- 5.1 Introduction -- 5.1.1 Historical Background -- 5.2 Pyrolysis -- 5.2.1 Pyrolysis Products -- 5.2.1.1 Liquid -- 5.2.1.2 Solid -- 5.2.1.3 Gas -- 5.2.2 Types of Pyrolysis -- 5.2.2.1 Slow Pyrolysis -- 5.2.2.2 Fast Pyrolysis -- 5.2.2.3 Flash Pyrolysis -- 5.2.2.4 Ultrarapid Pyrolysis -- 5.2.2.5 Pyrolysis in the Presence of a Medium -- 5.3 Pyrolysis Product Yield -- 5.3.1 Effect of Biomass Composition -- 5.3.2 Effect of Pyrolysis Temperature -- 5.3.3 Effect of Heating Rate -- 5.3.4 Effect of Particle Size -- 5.4 Pyrolysis Kinetics -- 5.4.1 Physical Aspects -- 5.4.2 Chemical Aspects -- 5.4.2.1 Cellulose -- 5.4.2.2 Hemicellulose -- 5.4.2.3 Lignin -- 5.4.3 Kinetic Models of Pyrolysis -- 5.4.3.1 One-Stage Global Single-Reaction Model -- 5.5 Heat Transfer in a Pyrolyzer -- 5.5.1 Mass Transfer Effect -- 5.5.2 Is Pyrolysis Autothermal? -- 5.6 Pyrolyzer Types -- 5.6.1 Fixed-Bed Pyrolyzer -- 5.6.2 Bubbling-Bed Pyrolyzer -- 5.6.3 CFB Pyrolyzer -- 5.6.4 Ultrarapid Pyrolyzer -- 5.6.5 Ablative Pyrolyzer -- 5.6.6 Rotating-Cone Pyrolyzer -- 5.6.7 Vacuum Pyrolyzer -- 5.7 Pyrolyzer Design Considerations -- 5.7.1 Production of Liquid Through Pyrolysis -- 5.8 Biochar -- 5.8.1 Potential Benefits of Biochar -- Symbols and Nomenclature -- 6 Tar Production and Destruction -- 6.1 Introduction -- 6.2 Tar -- 6.2.1 Acceptable Limits for Tar -- 6.2.1.1 Level of Tar Production.

6.2.2 Tar Formation -- 6.2.3 Tar Composition -- 6.2.3.1 Primary Tar -- 6.2.3.2 Secondary Tar -- 6.2.3.3 Tertiary Tar -- 6.3 Tar Reduction -- 6.3.1 In Situ Tar Primary Reduction -- 6.3.1.1 Reduction Reactions -- 6.3.1.2 Operating Conditions -- Temperature -- Reactor Pressure -- Residence Time -- Gasification Medium -- 6.3.1.3 Tar Reduction by Catalysts in Fluidized-Bed Gasifiers -- Dolomite -- Olivine -- Alkali -- Nickel -- Char -- 6.3.1.4 Gasifier Design -- Updraft Gasifier -- Downdraft Gasifier -- Fluidized-Bed Gasifier -- Entrained-Flow Gasifier -- 6.3.1.5 Design Modifications for Tar Removal -- 6.3.2 Postgasification-Secondary Reduction of Tar -- 6.3.2.1 Physical Tar Removal -- Cyclones -- Barrier Filters -- Wet Electrostatic Precipitators -- Wet Scrubbers -- Alkali Remover -- Disposal of Collected Tar -- 6.3.2.2 Cracking -- 7 Gasification Theory -- 7.1 Introduction -- 7.2 Gasification Reactions and Steps -- 7.2.1 Gasifying Medium -- 7.3 The Gasification Process -- 7.3.1 Drying -- 7.3.2 Pyrolysis -- 7.3.3 Char Gasification Reactions -- 7.3.3.1 Speed of Char Reactions -- 7.3.3.2 Boudouard Reaction -- 7.3.3.3 Water-Gas Reaction -- 7.3.3.4 Shift Reaction -- 7.3.3.5 Hydrogasification Reaction -- 7.3.4 Char Combustion Reactions -- 7.3.5 Catalytic Gasification -- 7.3.5.1 Catalyst Selection -- 7.3.6 Gasification Processes in Reactors -- 7.3.6.1 Moving-Bed Reactor -- 7.3.6.2 Fluidized-Bed Reactor -- 7.3.6.3 Entrained-Flow Reactor -- 7.4 Kinetics of Gasification -- 7.4.1 Chemical Equilibrium -- 7.4.1.1 Reaction Rate Constant -- 7.4.1.2 Gibbs Free Energy -- 7.4.1.3 Kinetics of Gas-Solid Reactions -- 7.4.1.4 Boudouard Reaction -- 7.4.1.5 Water-Gas Reaction -- 7.4.1.6 Hydrogasification Reaction -- 7.4.1.7 Steam Reforming of Hydrocarbon -- 7.4.1.8 Kinetics of Gas-Phase Reactions -- 7.4.2 Char Reactivity -- 7.4.2.1 Effect of Pyrolysis Conditions.

7.4.2.2 Effect of Mineral Matter in Biomass.
Abstract:
Biomass is the most widely used non-fossil fuel in the world. Biomass resources show a considerable potential in the long-term given the increasing proliferation of dedicated energy crops for biofuels. The second edition of Biomass Gasification and Pyrolysis is enhanced with new topics, such as torrefaction and cofiring, making it a versatile resource that not only explains the basic principles of energy conversion systems, but also provides valuable insight into the design of biomass conversion systems. This book will allow professionals, such as engineers, scientists, and operating personnel of biomass gasification, pyrolysis or torrefaction plants, to gain a better comprehension of the basics of biomass conversion. The author provides many worked out design problems, step-by-step design procedures and real data on commercially operating systems. With a dedicated focus on the design, analysis, and operational aspects of biomass gasification, pyrolysis, and torrefaction, Biomass Gasification, Pyrolysis and Torrefaction, Second Edition offers comprehensive coverage of biomass in its gas, liquid, and solid states in a single easy-to-access source. Contains new and updated step-by-step process flow diagrams, design data and conversion charts, and numerical examples with solutions Includes chapters dedicated to evolving torrefaction technologies, practicing option of biomass cofiring, and biomass conversion economics Expanded coverage of syngas and other Fischer-Tropsch alternatives Spotlights advanced processes such as supercritical water gasification and torrefaction of biomass. Provides available research results in an easy-to-use design methodology.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: