Cover image for Data Analysis in High Energy Physics : A Practical Guide to Statistical Methods.
Data Analysis in High Energy Physics : A Practical Guide to Statistical Methods.
Title:
Data Analysis in High Energy Physics : A Practical Guide to Statistical Methods.
Author:
Behnke, Olaf.
ISBN:
9783527653447
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (441 pages)
Contents:
Data Analysis in High Energy Physics -- Contents -- Preface -- List of Contributors -- 1 Fundamental Concepts -- 1.1 Introduction -- 1.2 Probability Density Functions -- 1.2.1 Expectation Values -- 1.2.2 Moments -- 1.2.3 Associated Functions -- 1.3 Theoretical Distributions -- 1.3.1 The Gaussian Distribution -- 1.3.2 The Poisson Distribution -- 1.3.3 The Binomial Distribution -- 1.3.4 Other Distributions -- 1.4 Probability -- 1.4.1 Mathematical Definition of Probability -- 1.4.2 Classical Definition of Probability -- 1.4.3 Frequentist Definition of Probability -- 1.4.4 Bayesian Definition of Probability -- 1.5 Inference and Measurement -- 1.5.1 Likelihood -- 1.5.2 Frequentist Inference -- 1.5.3 Bayesian Inference -- 1.6 Exercises -- References -- 2 Parameter Estimation -- 2.1 Parameter Estimation in High Energy Physics: Introductory Words -- 2.2 Parameter Estimation: Definition and Properties -- 2.3 The Method of Maximum Likelihood -- 2.3.1 Maximum-Likelihood Solution -- 2.3.2 Properties of the Maximum-Likelihood Estimator -- 2.3.3 Maximum Likelihood and Bayesian Statistics -- 2.3.4 Variance of the Maximum-Likelihood Estimator -- 2.3.5 Minimum-Variance Bound and Experiment Design -- 2.4 The Method of Least Squares -- 2.4.1 Linear Least-Squares Method -- 2.4.2 Non-linear Least-Squares Fits -- 2.5 Maximum-Likelihood Fits:Unbinned, Binned, Standard and Extended Likelihood -- 2.5.1 Unbinned Maximum-Likelihood Fits -- 2.5.2 Extended Maximum Likelihood -- 2.5.3 Binned Maximum-Likelihood Fits -- 2.5.4 Least-Squares Fit to a Histogram -- 2.5.5 Special Topic: Averaging Data with Inconsistencies -- 2.6 Bayesian Parameter Estimation -- 2.7 Exercises -- References -- 3 Hypothesis Testing -- 3.1 Basic Concepts -- 3.1.1 Statistical Hypotheses -- 3.1.2 Test Statistic -- 3.1.3 Critical Region -- 3.1.4 Type I and Type II Errors.

3.1.5 Summary: the Testing Process -- 3.2 Choosing the Test Statistic -- 3.3 Choice of the Critical Region -- 3.4 Determining Test Statistic Distributions -- 3.5 p-Values -- 3.5.1 Significance Levels -- 3.5.2 Inclusion of Systematic Uncertainties -- 3.5.3 Combining Tests -- 3.5.4 Look-Elsewhere Effect -- 3.6 Inversion of Hypothesis Tests -- 3.7 Bayesian Approach to Hypothesis Testing -- 3.8 Goodness-of-Fit Tests -- 3.8.1 Pearson's 2 Test -- 3.8.2 Run Test -- 3.8.3 2 Test with Unbinned Measurements -- 3.8.4 Test Using the Maximum-Likelihood Estimate -- 3.8.5 Kolmogorov-Smirnov Test -- 3.8.6 Smirnov-Cramér-von Mises Test -- 3.8.7 Two-Sample Tests -- 3.9 Conclusion -- 3.10 Exercises -- References -- 4 Interval Estimation -- 4.1 Introduction -- 4.2 Characterisation of Interval Constructions -- 4.3 Frequentist Methods -- 4.3.1 Neyman's Construction -- 4.3.2 Test Inversion -- 4.3.3 Pivoting -- 4.3.4 Asymptotic Approximations -- 4.3.5 Bootstrapping -- 4.3.6 Nuisance Parameters -- 4.4 Bayesian Methods -- 4.4.1 Binomial Efficiencies -- 4.4.2 Poisson Means -- 4.5 Graphical Comparison of Interval Constructions -- 4.6 The Role of Intervals in Search Procedures -- 4.6.1 Coverage -- 4.6.2 Sensitivity -- 4.7 Final Remarks and Recommendations -- 4.8 Exercises -- References -- 5 Classification -- 5.1 Introduction to Multivariate Classification -- 5.2 Classification from a Statistical Perspective -- 5.2.1 Receiver-Operating-Characteristic Curve and the Neyman-Pearson Lemma -- 5.2.2 Supervised Machine Learning -- 5.2.3 Bias-Variance Trade-Off -- 5.2.4 Cross-Validation -- 5.3 Multivariate Classification Techniques -- 5.3.1 Likelihood (Naive Bayes Classifier) -- 5.3.2 k-Nearest Neighbour and Multi-dimensional Likelihood -- 5.3.3 Fisher Linear Discriminant -- 5.3.4 Artificial Neural Networks - Feed-Forward Multi-layer Perceptrons -- 5.3.5 Support Vector Machines.

5.3.6 (Boosted) Decision Trees -- 5.3.7 Boosting and Bagging -- 5.4 General Remarks -- 5.4.1 Pre-processing -- 5.5 Dealing with Systematic Uncertainties -- 5.6 Exercises -- References -- 6 Unfolding -- 6.1 Inverse Problems -- 6.1.1 Direct and Inverse Processes -- 6.1.2 Discretisation and Linear Solution -- 6.1.3 Unfolding Poisson-Distributed Data -- 6.1.4 Convolution and Deconvolution -- 6.1.5 Parametrised Unfolding -- 6.2 Solution with Orthogonalisation -- 6.2.1 Singular Value and Eigenvalue Decomposition -- 6.2.2 Unfolding Using the Least Squares Method -- 6.2.3 Folding Versus Unfolding -- 6.3 Regularisation Methods -- 6.3.1 Norm and Derivative Regularisation -- 6.4 The Discrete Cosine Transformation and Projection Methods -- 6.4.1 Discrete Cosine Transformation -- 6.4.2 Projection Methods -- 6.4.3 Low-Pass Regularisation -- 6.5 Iterative Unfolding -- 6.6 Unfolding Problems in Particle Physics -- 6.6.1 Particle Physics Experiments -- 6.6.2 Unfolding Smooth Distributions -- 6.6.3 Unfolding Non-smooth Distributions -- 6.6.4 Presentation of Regularisation Results -- 6.7 Programs Used for Unfolding in High Energy Physics -- 6.8 Exercise -- References -- 7 Constrained Fits -- 7.1 Introduction -- 7.2 Solution by Elimination -- 7.2.1 Statistical Interpretation -- 7.3 The Method of Lagrange Multipliers -- 7.3.1 Lagrange Multipliers -- 7.3.2 Unmeasured Parameters -- 7.4 The Lagrange Multiplier Problem with Linear Constraintsand Quadratic Objective Function -- 7.4.1 Error Propagation -- 7.4.2 Error Propagation in the Presence of Unmeasured Quantities -- 7.5 Iterative Solution of the Lagrange Multiplier Problem -- 7.5.1 Choosing a Direction -- 7.5.2 Controlling the Step Length -- 7.5.3 Detecting Convergence -- 7.5.4 Finding Initial Values -- 7.5.5 Error Calculation -- 7.6 Further Reading and Web Resources -- 7.7 Exercises -- References.

8 How to Deal with Systematic Uncertainties -- 8.1 Introduction -- 8.2 What Are Systematic Uncertainties? -- 8.3 Detection of Possible Systematic Uncertainties -- 8.3.1 Top-Down Approach -- 8.3.2 Bottom-Up Approach -- 8.3.3 Examples for Detecting Systematics -- 8.4 Estimation of Systematic Uncertainties -- 8.4.1 Some Simple Cases -- 8.4.2 Educated Guesses -- 8.4.3 Cut Variations -- 8.4.4 Combination of Systematic Uncertainties -- 8.5 How to Avoid Systematic Uncertainties -- 8.5.1 Choice of Selection Criteria -- 8.5.2 Avoiding Biases -- 8.5.3 Blind Analyses -- 8.6 Conclusion -- 8.7 Exercise -- References -- 9 Theory Uncertainties -- 9.1 Overview -- 9.2 Factorisation: A Cornerstone of Calculations in QCD -- 9.2.1 The Perturbative Expansion and Uncertainties from Higher Orders -- 9.3 Power Corrections -- 9.3.1 Operator Product Expansion -- 9.3.2 Power Corrections in Cross Sections -- 9.4 The Final State -- 9.4.1 Underlying Event and Multi-Parton Interactions -- 9.4.2 From Partons to Hadrons -- 9.4.3 Monte Carlo Event Generators -- 9.5 From Hadrons to Partons -- 9.5.1 Parametric PDF Uncertainties -- 9.5.2 A Comparison of Recent PDF Sets -- 9.6 Exercises -- References -- 10 Statistical Methods Commonly Used in High Energy Physics -- 10.1 Introduction -- 10.2 Estimating Efficiencies -- 10.2.1 Motivation -- 10.2.2 Trigger Efficiencies and Their Estimates -- 10.2.3 The Counting Method -- 10.2.4 The Tag-and-Probe Method -- 10.2.5 The Bootstrap Method -- 10.2.6 Calculating Uncertainties on Trigger Efficiencies -- 10.3 Estimating the Contributions of Processes to a Dataset:The Matrix Method -- 10.3.1 Estimating the Background Contributions to a Data Sample -- 10.3.2 Extension to Distributions -- 10.3.3 Limitations of the Matrix Method -- 10.4 Estimating Parameters by Comparing Shapes of Distributions:The Template Method -- 10.4.1 Template Shapes.

10.4.2 Including Prior Knowledge -- 10.4.3 Including Efficiencies -- 10.4.4 Including Systematic Uncertainties -- 10.4.5 Systematic Uncertainties Due to the Fitting Procedure -- 10.4.6 Alternative Fitting Methods and Choice of Parameters -- 10.4.7 Extension to Multiple Channels and Multi-Dimensional Templates -- 10.5 Ensemble Tests -- 10.5.1 Generation of Ensembles -- 10.5.2 Results of Ensemble Tests -- 10.6 The Experimenter's Role and Data Blinding -- 10.6.1 The Experimenter's Preconception -- 10.6.2 Variants of Blind Analyses -- 10.7 Exercises -- References -- 11 Analysis Walk-Throughs -- 11.1 Introduction -- 11.2 Search for a Z Boson Decaying into Muons -- 11.2.1 Counting Experiment -- 11.2.2 Profile Likelihood Ratio Analysis -- 11.3 Measurement -- 11.3.1 Introduction -- 11.3.2 Unbinned Likelihood -- 11.3.3 Extracting a Measurement in the Presence of Nuisance Parameters -- 11.3.4 Mass Measurement -- 11.3.5 Testing for Bias and Coverage -- 11.3.6 Systematic Uncertainties -- 11.3.7 Constraints and Combining Measurements -- 11.4 Exercises -- References -- 12 Applications in Astronomy -- 12.1 Introduction -- 12.2 A Survey of Applications -- 12.2.1 The On/Off Problem -- 12.2.2 Image Reconstruction -- 12.2.3 Fitting Cosmological Parameters -- 12.3 Nested Sampling -- 12.4 Outlook and Conclusions -- 12.5 Exercises -- References -- The Authors -- Index.
Abstract:
This practical guide covers the essential tasks in statistical data analysis encountered in high energy physics and provides comprehensive advice for typical questions and problems. The basic methods for inferring results from data are presented as well as tools for advanced tasks such as improving the signal-to-background ratio, correcting detector effects, determining systematics and many others. Concrete applications are discussed in analysis walkthroughs. Each chapter is supplemented by numerous examples and exercises and by a list of literature and relevant links. The book targets a broad readership at all career levels - from students to senior researchers. An accompanying website provides more algorithms as well as up-to-date information and links. * Free solutions manual available for lecturers at www.wiley-vch.de/supplements/.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: