Cover image for Principles of Communications Networks and Systems.
Principles of Communications Networks and Systems.
Title:
Principles of Communications Networks and Systems.
Author:
Benvenuto, Nevio.
ISBN:
9781119978596
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (812 pages)
Contents:
Principles of Communications Networks and Systems -- Contents -- Preface -- List of Acronyms -- List of Symbols -- 1 Introduction to Telecommunication Services, Networks and Signaling -- 1.1 Telecommunication Services -- 1.1.1 Definition -- 1.1.2 Taxonomies According to Different Criteria -- 1.1.3 Taxonomies of Information Sources -- 1.2 Telecommunication Networks -- 1.2.1 Introduction -- 1.2.2 Access Network and Core Network -- 1.3 Circuit-Switched and Packet-Switched Communication Modes -- 1.4 Introduction to the ISO/OSI Model -- 1.4.1 The Layered Model -- 1.4.2 The ISO/OSI Model -- 1.5 Signaling -- 1.5.1 Introduction -- 1.5.2 Channel-Associated and Common-Channel Signaling -- 1.5.3 SS7 -- 1.5.4 PDH Networks -- 1.5.5 SDH Networks -- References -- 2 Deterministic and Random Signals -- 2.1 Time and Frequency Domain Representation -- 2.1.1 Continuous Time Signals -- 2.1.2 Frequency Domain Representation for Periodic Signals -- 2.1.3 Discrete Time Signals -- 2.2 Energy and Power -- 2.2.1 Energy and Energy Spectral Density -- 2.2.2 Instantaneous and Average Power -- 2.3 Systems and Transformations -- 2.3.1 Properties of a System -- 2.3.2 Filters -- 2.3.3 Sampling -- 2.3.4 Interpolation -- 2.4 Bandwidth -- 2.4.1 Classification of Signals and Systems -- 2.4.2 Uncertainty Principle -- 2.4.3 Practical Definitions of Band -- 2.4.4 Heaviside Conditions -- 2.4.5 Sampling Theorem -- 2.4.6 Nyquist Criterion -- 2.5 The Space of Signals -- 2.5.1 Linear Space -- 2.5.2 Signals as Elements in a Linear Space -- 2.5.3 Gram-Schmidt Orthonormalization in Signal Spaces -- 2.5.4 Vector Representation of Signals -- 2.5.5 Orthogonal Projections onto a Signal Space -- 2.6 Random Variables and Vectors -- 2.6.1 Statistical Description of Random Variables -- 2.6.2 Expectation and Statistical Power -- 2.6.3 Random Vectors.

2.6.4 Second Order Description of Random Vectors and Gaussian Vectors -- 2.6.5 Complex-Valued Random Variables -- 2.7 Random Processes -- 2.7.1 Definition and Properties -- 2.7.2 Point and Poisson Processes -- 2.7.3 Stationary and Ergodic Random Processes -- 2.7.4 Second Order Description of a WSS Process -- 2.7.5 Joint Second-Order Description of Two Random Processes -- 2.7.6 Second-Order Description of a Cyclostationary Process -- 2.8 Systems with Random Inputs and Outputs -- 2.8.1 Filtering of a WSS Random Process -- 2.8.2 Filtering of a Cyclostationary Random Process -- 2.8.3 Sampling and Interpolation of Stationary Random Processes -- Appendix: The Complementary Normalized Gaussian Distribution Function -- Problems -- References -- 3 Sources of Digital Information -- 3.1 Digital Representation of Waveforms -- 3.1.1 Analog-to-Digital Converter (ADC) -- 3.1.2 Digital-to-Analog Converter (DAC) -- 3.1.3 Quantizer -- 3.1.4 Uniform Quantizers -- 3.1.5 Quantization Error -- 3.1.6 Quantizer SNR -- 3.1.7 Nonuniform Quantizers -- 3.1.8 Companding Techniques and SNR -- 3.2 Examples of Application -- 3.3 Information and Entropy -- 3.3.1 A Measure for Information -- 3.3.2 Entropy -- 3.3.3 Efficiency and Redundancy -- 3.3.4 Information Rate of a Message -- 3.4 Source Coding -- 3.4.1 The Purpose of Source Coding -- 3.4.2 Entropy Coding -- 3.4.3 Shannon Theorem on Source Coding -- 3.4.4 Optimal Source Coding -- 3.4.5 Arithmetic Coding -- Problems -- References -- 4 Characterization of Transmission Media and Devices -- 4.1 Two-Terminal Devices -- 4.1.1 Electrical Representation of a Signal Source -- 4.1.2 Electrical Power -- 4.1.3 Measurement of Electrical Power -- 4.1.4 Load Matching and Available Power -- 4.1.5 Thermal Noise -- 4.1.6 Other Sources of Noise -- 4.1.7 Noise Temperature -- 4.2 Two-Port Networks -- 4.2.1 Reference Model.

4.2.2 Network Power Gain and Matched Network -- 4.2.3 Power Gain in Terms of Electrical Parameters -- 4.2.4 Noise Temperature -- 4.2.5 Noise Figure -- 4.2.6 Cascade of Two-Port Networks -- 4.3 Transmission System Model -- 4.3.1 Electrical Model -- 4.3.2 AWGN Model -- 4.3.3 Signal-to-noise Ratio -- 4.3.4 Narrowband Channel Model and Link Budget -- 4.4 Transmission Media -- 4.4.1 Transmission Lines and Cables -- 4.4.2 Power-Line Communications -- 4.4.3 Optical Fiber -- 4.4.4 Radio Links -- 4.4.5 Underwater Acoustic Propagation -- Problems -- References -- 5 Digital Modulation Systems -- 5.1 Introduction -- 5.2 Digital Modulation Theory for an AWGN Channel -- 5.2.1 Transmission of a Single Pulse -- 5.2.2 Optimum Detection -- 5.2.3 Statistical Characterization of Random Vectors -- 5.2.4 Optimum Decision Regions -- 5.2.5 Maximum A Posteriori Criterion -- 5.2.6 Maximum Likelihood Criterion -- 5.2.7 Minimum Distance Criterion -- 5.2.8 Implementation of Minimum Distance Receivers -- 5.2.9 The Theorem of Irrelevance -- 5.3 Binary Modulation -- 5.3.1 Error Probability -- 5.3.2 Antipodal and Orthogonal Signals -- 5.3.3 Single Filter Receivers -- 5.4 M-ary Modulation -- 5.4.1 Bounds on the Error Probability -- 5.4.2 Orthogonal and Biorthogonal Modulations -- 5.5 The Digital Modulation System -- 5.5.1 System Overview -- 5.5.2 Front-end Receiver Implementation -- 5.5.3 The Binary Channel -- 5.5.4 The Inner Numerical Channel -- 5.5.5 Realistic Receiver Structure -- 5.6 Examples of Digital Modulations -- 5.6.1 Pulse Amplitude Modulation (PAM) -- 5.6.2 Quadrature Amplitude Modulation (QAM) -- 5.6.3 Phase Shift Keying (PSK) -- 5.6.4 Frequency Shift Keying (FSK) -- 5.6.5 Code Division Modulation -- 5.7 Comparison of Digital Modulation Systems -- 5.7.1 Reference Bandwidth and Link Budget -- 5.7.2 Comparison in Terms of Performance, Bandwidth and Spectral Efficiency.

5.8 Advanced Digital Modulation Techniques -- 5.8.1 Orthogonal Frequency Division Multiplexing -- 5.8.2 Spread Spectrum Techniques -- 5.9 Digital Transmission of Analog Signals -- 5.9.1 Transmission through a Binary Channel -- 5.9.2 Evaluation of the Overall SNR -- 5.9.3 Digital versus Analog Transmission -- 5.9.4 Digital Transmission over Long Distances: Analog versus Regenerative Repeaters -- Problems -- References -- 6 Channel Coding and Capacity -- 6.1 Principles of Channel Coding -- 6.1.1 The Purpose of Channel Coding -- 6.1.2 Binary Block Codes -- 6.1.3 Decoding Criteria. Minimum Distance Decoding -- 6.2 Linear Block Codes -- 6.2.1 Construction of Linear Codes -- 6.2.2 Decoding of Linear Codes -- 6.2.3 Cyclic Codes -- 6.2.4 Specific Classes of Linear Block Codes -- 6.2.5 Performance of Linear Codes -- 6.3 Convolutional Codes -- 6.3.1 Construction and Properties -- 6.3.2 Decoding of Convolutional Codes and the Viterbi Algorithm -- 6.4 Channel Capacity -- 6.4.1 Capacity of a Numerical Channel -- 6.4.2 Capacity of the AWGN Channel -- 6.5 Codes that Approach Capacity -- 6.5.1 Soft Decoding -- 6.5.2 Concatenated Codes -- 6.5.3 Low Density Parity Check Codes -- Problems -- References -- 7 Markov Chains Theory -- 7.1 Introduction -- 7.2 Discrete-Time Markov Chains -- 7.2.1 Definition of Discrete-Time MC -- 7.2.2 Transition Probabilities of Discrete-Time MC -- 7.2.3 Sojourn Times of Discrete-Time MC -- 7.2.4 Chapman-Kolmogorov Equations for Discrete-Time MC -- 7.2.5 Transition Diagram of Discrete-Time MC -- 7.2.6 State Probability of Discrete-Time MC -- 7.2.7 Classification of Discrete-Time Markov Chains -- 7.2.8 Asymptotic Behavior of Discrete-Time MC -- 7.3 Continuous-Time Markov Chains -- 7.3.1 Definition of Continuous-Time MC -- 7.3.2 Transition Probabilities of Continuous-Time MC -- 7.3.3 Sojourn Times of Continuous-Time MC.

7.3.4 Chapman-Kolmogorov Equations for Continuous-Time MC -- 7.3.5 The Infinitesimal Generator Matrix Q -- 7.3.6 Forward and Backward Equations for Continuous-Time MC -- 7.3.7 Embedded Markov Chain -- 7.3.8 Flow Diagram of Continuous-Time MC -- 7.3.9 State Probability of Continuous-Time MC -- 7.3.10 Classification of Continuous-Time MC -- 7.3.11 Asymptotic Behavior of Continuous-Time MC -- 7.4 Birth-Death Processes -- 7.4.1 Definition of BDP -- 7.4.2 Time-Dependent Behavior of BDP -- 7.4.3 Asymptotic Behavior of BDP -- Problems -- References -- 8 Queueing Theory -- 8.1 Objective of Queueing Theory -- 8.2 Specifications of a Queueing System -- 8.2.1 The Arrival Process -- 8.2.2 The Service Process -- 8.2.3 The Queueing Structure -- 8.2.4 The Service Discipline -- 8.2.5 Kendall Notation -- 8.3 Performance Characterization of a QS -- 8.3.1 Occupancy Measures -- 8.3.2 Time Measures -- 8.3.3 Traffic Measures -- 8.4 Little's Law -- 8.5 Markovian Queueing Models -- 8.5.1 The M/M/1 Queueing System -- 8.5.2 The M/M/m Queueing System -- 8.5.3 The M/M/1/K Queueing System -- 8.5.4 The M/M/m/m Queueing System -- 8.5.5 The M/M/m/K Queueing System -- 8.6 The M/G/1 Queueing System -- 8.7 The M/D/1 Queueing System -- Problems -- References -- 9 Data Link Layer -- 9.1 Introduction -- 9.2 Medium Access Control -- 9.2.1 Deterministic Access: TDMA and FDMA -- 9.2.2 Time-Division Multiple Access -- 9.2.3 Frequency-Division Multiple Access -- 9.2.4 Comparison between TDMA and FDMA -- 9.2.5 Demand-Based Access: Polling and Token Ring -- 9.2.6 Random Access Protocols: ALOHA and Slotted ALOHA -- 9.2.7 Carrier Sense Multiple Access -- 9.2.8 Performance Comparison of Channel Access Schemes -- 9.3 Automatic Retransmission Request -- 9.3.1 Stop-and-Wait ARQ -- 9.3.2 Go Back N ARQ -- 9.3.3 Selective Repeat ARQ -- 9.3.4 Performance Comparison of ARQ Schemes.

9.3.5 Optimal PDU Size for ARQ.
Abstract:
Addressing the fundamental technologies and theories associated with designing complex communications systems and networks, Principles of Communications Networks and Systems provides models and analytical methods for evaluating their performance. Including both the physical layer (digital transmission and modulation) and networking topics, the quality of service concepts belonging to the different layers of the protocol stack are interrelated to form a comprehensive picture. The book is designed to present the material in an accessible but rigorous manner. It jointly addresses networking and transmission aspects following a unified approach and using a bottom up style of presentation, starting from requirements on transmission links all the way up to the corresponding quality of service at network and application layers. The focus is on presenting the material in an integrated and systematic fashion so that students will have a clear view of all the principal aspects and of how they interconnect with each other. A comprehensive introduction to communications systems and networks, addressing both network and transmission topics Structured for effective learning, with basic principles and technologies being introduced before more advanced ones are explained Features examples of existing systems and recent standards as well as advanced digital modulation techniques such as CDMA and OFDM Contains tools to help the reader in the design and performance analysis of modern communications systems Provides problems at the end of each chapter, with answers on an accompanying website.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Added Author:
Electronic Access:
Click to View
Holds: Copies: