Cover image for Renewable Resources for Biorefineries.
Renewable Resources for Biorefineries.
Title:
Renewable Resources for Biorefineries.
Author:
Berezina, Ing, Nathalie.
ISBN:
9781782620181
Personal Author:
Edition:
1st ed.
Physical Description:
1 online resource (217 pages)
Series:
Green Chemistry Series ; v.27

Green Chemistry Series
Contents:
Renewable Resources for Biorefineries -- Contents -- Chapter 1 Bio-based Polymers and Materials -- 1.1 Introduction -- 1.2 Direct Production of Biopolymers -- 1.2.1 PHA -- 1.2.2 Polysaccharides and Oligosaccharides -- 1.2.3 Others -- 1.3 Production of Bio-based Monomers for Further Polymerization -- 1.3.1 Lactic Acid and PLA -- 1.3.2 1,3-Propanediol and Sorona® -- 1.3.3 Succinic Acid and PBS -- 1.3.4 Others -- 1.4 Outlook -- References -- Chapter 2 Fundamentals and Biotechnological Applications of Downstream Processing Technologies -- 2.1 Introduction -- 2.2 Downstream Processing Steps -- 2.2.1 Cell Inactivation -- 2.2.2 Clarification -- 2.2.3 Liquid/Liquid Extraction -- 2.2.4 Cell Disruption -- 2.2.5 Polishing -- 2.2.6 Non-chromatographic Approaches for Purification -- 2.3 Examples of Downstream Processing of Different Products -- 2.3.1 Recovery of Biopolymers or Bio-based Monomers for Further Polymerization -- 2.3.2 Pharmaceutical Applications: Viral Vectors, Plasmid and Vaccine Manufacturing Processes -- 2.4 Conclusions -- References -- Chapter 3 Enhanced Biomass Degradation by Polysaccharide Monooxygenases -- 3.1 Introduction -- 3.2 Synergy in Cellulose Degradation -- 3.3 Protein Structure -- 3.3.1 Overall Fold -- 3.3.2 Conservation -- 3.4 The Oxidative Reaction -- 3.4.1 Reaction Components -- 3.4.2 Location of Oxidation -- 3.4.3 Putative Reaction Mechanism -- 3.4.4 Similar Reactions -- 3.5 Activity Measurement -- 3.5.1 Colorimetric Methods -- 3.5.2 Analytical Methods -- 3.6 Classification -- 3.7 Conclusion -- Acknowledgements -- References -- Chapter 4 Microalgae Technology -- 4.1 Introduction -- 4.2 Mass Cultivation -- 4.2.1 Open Pond System -- 4.2.2 Photo Bio-reactor (PBR) System -- 4.3 Cultivation Mode -- 4.4 Biomass Processing -- 4.4.1 Harvesting -- 4.4.2 Dewatering -- 4.4.3 Extraction -- 4.4.4 Oil Transesterification.

4.5 Improving the Economics of Microalgal Oil -- 4.5.1 Genetic Engineering -- 4.5.2 Biorefinery-based Production Strategy -- 4.5.3 Development of Low-cost Carbon Source -- 4.6 Conclusions and Outlook -- Acknowledgement -- References -- Chapter 5 Application of Food Waste Valorization Technology in Hong Kong -- 5.1 Introduction -- 5.1.1 Characteristics of Food Waste -- 5.1.2 Definitions of Food Waste -- 5.1.3 Limitations of the Application of Food Waste Valorization Technology -- 5.2 Current Status of Food Waste in Hong Kong -- 5.3 Overview of Food Waste Valorization Technology -- 5.3.1 Waste to Soil: Composting -- 5.3.2 Waste to Food Chain: Animal Feed Production -- 5.3.3 Waste to Energy: Incineration -- 5.3.4 Waste to Energy: Anaerobic Digestion -- 5.3.5 Waste to Biomass Resource -- 5.4 Advantages and Disadvantages of Food Waste Valorization Technologies -- 5.4.1 Waste to Soil: Composting -- 5.4.2 Waste to Food Chain: Animal Feed Production -- 5.4.3 Waste to Energy by Incineration -- 5.4.4 Waste to Energy by Anaerobic Digestion -- 5.4.5 Waste to Biomass Resource -- 5.5 Food Waste Valorization Technologies in Hong Kong -- 5.5.1 Composting -- 5.5.2 Animal Feed Production -- 5.5.3 Incineration -- 5.5.4 Anaerobic Digestion -- 5.6 Suitable Technologies for Hong Kong -- 5.6.1 Commercial and Industrial Food Waste -- 5.6.2 Domestic Food Waste -- 5.7 Conclusions -- Acknowledgements -- References -- Chapter 6 Advanced Generation of Bioenergy -- 6.1 Biofuel Introduction -- 6.2 First Generation Bioethanol Production -- 6.2.1 Milling -- 6.2.2 Liquefaction and Saccharification -- 6.2.3 Fermentation -- 6.2.4 Distillation -- 6.2.5 Dehydration -- 6.3 Introduction of Advanced Generation Bioethanol Production -- 6.3.1 Advanced Generation Bioethanol Production Process -- 6.4 Lignocellulosic Feedstock -- 6.4.1 Cellulose -- 6.4.2 Hemicellulose -- 6.4.3 Lignin.

6.5 Pre-treatment -- 6.5.1 Physical Pre-treatment -- 6.5.2 Chemical and Thermochemical Pre-treatment -- 6.5.3 Biological Pre-treatment -- 6.6 Detoxification -- 6.7 Hydrolysis -- 6.7.1 Glycosyl Hydrolases -- 6.7.2 Enzyme Production -- 6.8 Fermentation -- 6.8.1 Yeast Fermentation and Yeast Genetic Modification -- 6.8.2 Yeast and Tolerance to Inhibitors -- 6.8.3 Co-fermentation using Yeast Strains -- 6.8.4 Thermophilic Bioethanol Production -- 6.9 Conclusion -- References -- Chapter 7 High Value Chemicals and Materials Production Based on Biomass Components Separation -- 7.1 Introduction -- 7.2 Separating the Components of Biomass -- 7.2.1 Acid Hydrolysis for Biomass Separation -- 7.2.2 Alkaline Hydrolysis for Biomass Separation -- 7.2.3 Ammonia Fiber Expansion for Biomass Separation -- 7.2.4 Hydrothermal Treatment for Biomass Separation -- 7.2.5 Organic Solvent for Biomass Separation -- 7.2.6 Ionic Liquid for Biomass Separation -- 7.2.7 Biomass Separation and Production of Chemicals and Fuels -- 7.2.8 Summary -- 7.3 Chemicals Production From Lignin -- 7.3.1 Lignin-based Materials -- 7.3.2 Lignin Application in Carbon Fibers -- 7.3.3 Polymer Modifiers -- 7.3.4 Resin, Adhesives, Binders and Others -- 7.3.5 Power, Fuels and Syngas Products -- 7.3.6 Liquefaction to Prepare Value Added Phenolic Compounds -- 7.3.7 Summary -- 7.4 Upgrading of Cellulose and its Products -- 7.4.1 Structures and Properties of Cellulose -- 7.4.2 The Catalytic Conversion of Cellulose to Fuels and Chemicals -- 7.4.3 Functional Cellulose Materials Prepared from Non-derivatizing Solvents -- 7.4.4 Derivative Modification of Cellulose and Graft Copolymers -- 7.4.5 Summary -- 7.5 Chemicals and Materials from Hemicellulose -- 7.5.1 Fractionation and Purification of Hemicelluloses -- 7.5.2 Enzymatic Hydrolysis of Hemicelluloses -- 7.5.3 Materials and Chemicals from Hemicellulose.

7.5.4 Applications -- 7.5.5 Summary -- 7.6 Conclusions and Suggestions -- Acknowledgements -- References -- Chapter 8 Bioactive Compounds from Biomass -- 8.1 Value of Biomass -- 8.1.1 Introduction -- 8.1.2 Screening of Bioactive Activity from Biomass -- 8.2 Bioactive Compounds from Biomass -- 8.2.1 Carbohydrates -- 8.2.2 Peptides and Proteins -- 8.2.3 Secondary Metabolites -- 8.3 Case Study: Bioactive Compound from Tobacco Waste -- 8.3.1 Sclareol -- 8.3.2 Alkaloids -- 8.3.3 Solanesol -- 8.3.4 Proteins and Amino Acids -- 8.3.5 Organic Acids -- 8.3.6 Carbohydrates -- References -- Subject Index.
Abstract:
An ideal book for upper level undergraduate and postgraduate students taking modules on Renewable resources, green chemistry, sustainable development, environmental science, agricultural science and environmental technology.
Local Note:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic Access:
Click to View
Holds: Copies: